]> git.tuebingen.mpg.de Git - paraslash.git/blob - wmadec_filter.c
3d8a72800d42729792be719113f205e1d0e496da
[paraslash.git] / wmadec_filter.c
1 /*
2  * WMA compatible decoder
3  *
4  * Extracted 2009 from the mplayer source code 2009-02-10.
5  *
6  * Copyright (c) 2002 The FFmpeg Project
7  *
8  * Licensed under the GNU Lesser General Public License.
9  * For licencing details see COPYING.LIB.
10  */
11
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
13
14 /*
15  * This decoder handles Microsoft Windows Media Audio data version 2.
16  */
17
18 #define _XOPEN_SOURCE 600
19
20 #include <sys/time.h>
21 #include <inttypes.h>
22 #include <stdio.h>
23 #include <stdlib.h>
24 #include <math.h>
25 #include <string.h>
26 #include <regex.h>
27
28 #include "para.h"
29 #include "error.h"
30 #include "list.h"
31 #include "ggo.h"
32 #include "string.h"
33 #include "sched.h"
34 #include "filter.h"
35 #include "bitstream.h"
36 #include "imdct.h"
37 #include "wma.h"
38 #include "wmadata.h"
39
40
41 /* size of blocks */
42 #define BLOCK_MIN_BITS 7
43 #define BLOCK_MAX_BITS 11
44 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
45
46 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
47
48 /* XXX: find exact max size */
49 #define HIGH_BAND_MAX_SIZE 16
50
51 /* XXX: is it a suitable value ? */
52 #define MAX_CODED_SUPERFRAME_SIZE 16384
53
54 #define MAX_CHANNELS 2
55
56 #define NOISE_TAB_SIZE 8192
57
58 #define LSP_POW_BITS 7
59
60 struct private_wmadec_data {
61         struct asf_header_info ahi;
62         struct getbit_context gb;
63         int use_bit_reservoir;
64         int use_variable_block_len;
65         int use_exp_vlc;        ///< exponent coding: 0 = lsp, 1 = vlc + delta
66         int use_noise_coding;   ///< true if perceptual noise is added
67         int byte_offset_bits;
68         struct vlc exp_vlc;
69         int exponent_sizes[BLOCK_NB_SIZES];
70         uint16_t exponent_bands[BLOCK_NB_SIZES][25];
71         int high_band_start[BLOCK_NB_SIZES];    ///< index of first coef in high band
72         int coefs_start;        ///< first coded coef
73         int coefs_end[BLOCK_NB_SIZES];  ///< max number of coded coefficients
74         int exponent_high_sizes[BLOCK_NB_SIZES];
75         int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
76         struct vlc hgain_vlc;
77
78         /* coded values in high bands */
79         int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
80         int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
81
82         /* there are two possible tables for spectral coefficients */
83         struct vlc coef_vlc[2];
84         uint16_t *run_table[2];
85         uint16_t *level_table[2];
86         uint16_t *int_table[2];
87         const struct coef_vlc_table *coef_vlcs[2];
88         /* frame info */
89         int frame_len;          ///< frame length in samples
90         int frame_len_bits;     ///< frame_len = 1 << frame_len_bits
91         int nb_block_sizes;     ///< number of block sizes
92         /* block info */
93         int reset_block_lengths;
94         int block_len_bits;     ///< log2 of current block length
95         int next_block_len_bits;        ///< log2 of next block length
96         int prev_block_len_bits;        ///< log2 of prev block length
97         int block_len;          ///< block length in samples
98         int block_pos;          ///< current position in frame
99         uint8_t ms_stereo;      ///< true if mid/side stereo mode
100         uint8_t channel_coded[MAX_CHANNELS];    ///< true if channel is coded
101         int exponents_bsize[MAX_CHANNELS];      ///< log2 ratio frame/exp. length
102         float exponents[MAX_CHANNELS][BLOCK_MAX_SIZE];
103         float max_exponent[MAX_CHANNELS];
104         int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
105         float coefs[MAX_CHANNELS][BLOCK_MAX_SIZE];
106         float output[BLOCK_MAX_SIZE * 2];
107         struct mdct_context *mdct_ctx[BLOCK_NB_SIZES];
108         float *windows[BLOCK_NB_SIZES];
109         /* output buffer for one frame and the last for IMDCT windowing */
110         float frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2];
111         /* last frame info */
112         uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
113         int last_bitoffset;
114         int last_superframe_len;
115         float noise_table[NOISE_TAB_SIZE];
116         int noise_index;
117         float noise_mult;       /* XXX: suppress that and integrate it in the noise array */
118         /* lsp_to_curve tables */
119         float lsp_cos_table[BLOCK_MAX_SIZE];
120         float lsp_pow_e_table[256];
121         float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
122         float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
123 };
124
125 #define EXPVLCBITS 8
126 #define EXPMAX ((19 + EXPVLCBITS - 1) / EXPVLCBITS)
127
128 #define HGAINVLCBITS 9
129 #define HGAINMAX ((13 + HGAINVLCBITS - 1) / HGAINVLCBITS)
130
131 #define VLCBITS 9
132 #define VLCMAX ((22 + VLCBITS - 1) / VLCBITS)
133
134 DECLARE_ALIGNED(16, float, ff_sine_128[128]);
135 DECLARE_ALIGNED(16, float, ff_sine_256[256]);
136 DECLARE_ALIGNED(16, float, ff_sine_512[512]);
137 DECLARE_ALIGNED(16, float, ff_sine_1024[1024]);
138 DECLARE_ALIGNED(16, float, ff_sine_2048[2048]);
139 DECLARE_ALIGNED(16, float, ff_sine_4096[4096]);
140
141 static float *ff_sine_windows[6] = {
142         ff_sine_128, ff_sine_256, ff_sine_512, ff_sine_1024,
143         ff_sine_2048, ff_sine_4096
144 };
145
146 /* Generate a sine window. */
147 static void sine_window_init(float *window, int n)
148 {
149         int i;
150
151         for (i = 0; i < n; i++)
152                 window[i] = sinf((i + 0.5) * (M_PI / (2.0 * n)));
153 }
154
155 static int wmadec_cleanup(struct private_wmadec_data *s)
156 {
157         int i;
158
159         for (i = 0; i < s->nb_block_sizes; i++)
160                 imdct_end(s->mdct_ctx[i]);
161         if (s->use_exp_vlc)
162                 free_vlc(&s->exp_vlc);
163         if (s->use_noise_coding)
164                 free_vlc(&s->hgain_vlc);
165         for (i = 0; i < 2; i++) {
166                 free_vlc(&s->coef_vlc[i]);
167                 free(s->run_table[i]);
168                 free(s->level_table[i]);
169                 free(s->int_table[i]);
170         }
171         return 0;
172 }
173
174 /* XXX: use same run/length optimization as mpeg decoders */
175 //FIXME maybe split decode / encode or pass flag
176 static void init_coef_vlc(struct vlc *vlc, uint16_t **prun_table,
177                 uint16_t **plevel_table, uint16_t **pint_table,
178                 const struct coef_vlc_table *vlc_table)
179 {
180         int n = vlc_table->n;
181         const uint8_t *table_bits = vlc_table->huffbits;
182         const uint32_t *table_codes = vlc_table->huffcodes;
183         const uint16_t *levels_table = vlc_table->levels;
184         uint16_t *run_table, *level_table, *int_table;
185         int i, l, j, k, level;
186
187         init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4);
188
189         run_table = para_malloc(n * sizeof(uint16_t));
190         level_table = para_malloc(n * sizeof(uint16_t));
191         int_table = para_malloc(n * sizeof(uint16_t));
192         i = 2;
193         level = 1;
194         k = 0;
195         while (i < n) {
196                 int_table[k] = i;
197                 l = levels_table[k++];
198                 for (j = 0; j < l; j++) {
199                         run_table[i] = j;
200                         level_table[i] = level;
201                         i++;
202                 }
203                 level++;
204         }
205         *prun_table = run_table;
206         *plevel_table = level_table;
207         *pint_table = int_table;
208 }
209
210 /* compute the scale factor band sizes for each MDCT block size */
211 static void compute_scale_factor_band_sizes(struct private_wmadec_data *s,
212         float high_freq)
213 {
214         struct asf_header_info *ahi = &s->ahi;
215         int a, b, pos, lpos, k, block_len, i, j, n;
216         const uint8_t *table;
217
218         s->coefs_start = 0;
219         for (k = 0; k < s->nb_block_sizes; k++) {
220                 block_len = s->frame_len >> k;
221
222                 table = NULL;
223                 a = s->frame_len_bits - BLOCK_MIN_BITS - k;
224                 if (a < 3) {
225                         if (ahi->sample_rate >= 44100)
226                                 table = exponent_band_44100[a];
227                         else if (ahi->sample_rate >= 32000)
228                                 table = exponent_band_32000[a];
229                         else if (ahi->sample_rate >= 22050)
230                                 table = exponent_band_22050[a];
231                 }
232                 if (table) {
233                         n = *table++;
234                         for (i = 0; i < n; i++)
235                                 s->exponent_bands[k][i] = table[i];
236                         s->exponent_sizes[k] = n;
237                 } else {
238                         j = 0;
239                         lpos = 0;
240                         for (i = 0; i < 25; i++) {
241                                 a = wma_critical_freqs[i];
242                                 b = ahi->sample_rate;
243                                 pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
244                                 pos <<= 2;
245                                 if (pos > block_len)
246                                         pos = block_len;
247                                 if (pos > lpos)
248                                         s->exponent_bands[k][j++] = pos - lpos;
249                                 if (pos >= block_len)
250                                         break;
251                                 lpos = pos;
252                         }
253                         s->exponent_sizes[k] = j;
254                 }
255
256                 /* max number of coefs */
257                 s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
258                 /* high freq computation */
259                 s->high_band_start[k] = (int) ((block_len * 2 * high_freq)
260                         / ahi->sample_rate + 0.5);
261                 n = s->exponent_sizes[k];
262                 j = 0;
263                 pos = 0;
264                 for (i = 0; i < n; i++) {
265                         int start, end;
266                         start = pos;
267                         pos += s->exponent_bands[k][i];
268                         end = pos;
269                         if (start < s->high_band_start[k])
270                                 start = s->high_band_start[k];
271                         if (end > s->coefs_end[k])
272                                 end = s->coefs_end[k];
273                         if (end > start)
274                                 s->exponent_high_bands[k][j++] = end - start;
275                 }
276                 s->exponent_high_sizes[k] = j;
277         }
278 }
279
280 static int wma_init(struct private_wmadec_data *s, int flags2, struct asf_header_info *ahi)
281 {
282         int i;
283         float bps1, high_freq;
284         volatile float bps;
285         int sample_rate1;
286         int coef_vlc_table;
287
288         if (ahi->sample_rate <= 0 || ahi->sample_rate > 50000
289                 || ahi->channels <= 0 || ahi->channels > 8
290                 || ahi->bit_rate <= 0)
291                 return -E_WMA_BAD_PARAMS;
292
293         /* compute MDCT block size */
294         if (ahi->sample_rate <= 16000) {
295                 s->frame_len_bits = 9;
296         } else if (ahi->sample_rate <= 22050) {
297                 s->frame_len_bits = 10;
298         } else {
299                 s->frame_len_bits = 11;
300         }
301         s->frame_len = 1 << s->frame_len_bits;
302         if (s->use_variable_block_len) {
303                 int nb_max, nb;
304                 nb = ((flags2 >> 3) & 3) + 1;
305                 if ((ahi->bit_rate / ahi->channels) >= 32000)
306                         nb += 2;
307                 nb_max = s->frame_len_bits - BLOCK_MIN_BITS;
308                 if (nb > nb_max)
309                         nb = nb_max;
310                 s->nb_block_sizes = nb + 1;
311         } else
312                 s->nb_block_sizes = 1;
313
314         /* init rate dependent parameters */
315         s->use_noise_coding = 1;
316         high_freq = ahi->sample_rate * 0.5;
317
318         /* wma2 rates are normalized */
319         sample_rate1 = ahi->sample_rate;
320         if (sample_rate1 >= 44100)
321                 sample_rate1 = 44100;
322         else if (sample_rate1 >= 22050)
323                 sample_rate1 = 22050;
324         else if (sample_rate1 >= 16000)
325                 sample_rate1 = 16000;
326         else if (sample_rate1 >= 11025)
327                 sample_rate1 = 11025;
328         else if (sample_rate1 >= 8000)
329                 sample_rate1 = 8000;
330
331         bps = (float) ahi->bit_rate / (float) (ahi->channels * ahi->sample_rate);
332         s->byte_offset_bits = wma_log2((int) (bps * s->frame_len / 8.0 + 0.5)) + 2;
333         /*
334          * Compute high frequency value and choose if noise coding should be
335          * activated.
336          */
337         bps1 = bps;
338         if (ahi->channels == 2)
339                 bps1 = bps * 1.6;
340         if (sample_rate1 == 44100) {
341                 if (bps1 >= 0.61)
342                         s->use_noise_coding = 0;
343                 else
344                         high_freq = high_freq * 0.4;
345         } else if (sample_rate1 == 22050) {
346                 if (bps1 >= 1.16)
347                         s->use_noise_coding = 0;
348                 else if (bps1 >= 0.72)
349                         high_freq = high_freq * 0.7;
350                 else
351                         high_freq = high_freq * 0.6;
352         } else if (sample_rate1 == 16000) {
353                 if (bps > 0.5)
354                         high_freq = high_freq * 0.5;
355                 else
356                         high_freq = high_freq * 0.3;
357         } else if (sample_rate1 == 11025) {
358                 high_freq = high_freq * 0.7;
359         } else if (sample_rate1 == 8000) {
360                 if (bps <= 0.625) {
361                         high_freq = high_freq * 0.5;
362                 } else if (bps > 0.75) {
363                         s->use_noise_coding = 0;
364                 } else {
365                         high_freq = high_freq * 0.65;
366                 }
367         } else {
368                 if (bps >= 0.8) {
369                         high_freq = high_freq * 0.75;
370                 } else if (bps >= 0.6) {
371                         high_freq = high_freq * 0.6;
372                 } else {
373                         high_freq = high_freq * 0.5;
374                 }
375         }
376         PARA_INFO_LOG("channels=%d sample_rate=%d "
377                 "bitrate=%d block_align=%d\n",
378                 ahi->channels, ahi->sample_rate,
379                 ahi->bit_rate, ahi->block_align);
380         PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
381                 "high_freq=%f bitoffset=%d\n",
382                 s->frame_len, bps, bps1,
383                 high_freq, s->byte_offset_bits);
384         PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
385                 s->use_noise_coding, s->use_exp_vlc, s->nb_block_sizes);
386
387         compute_scale_factor_band_sizes(s, high_freq);
388         /* init MDCT windows : simple sinus window */
389         for (i = 0; i < s->nb_block_sizes; i++) {
390                 int n;
391                 n = 1 << (s->frame_len_bits - i);
392                 sine_window_init(ff_sine_windows[s->frame_len_bits - i - 7], n);
393                 s->windows[i] = ff_sine_windows[s->frame_len_bits - i - 7];
394         }
395
396         s->reset_block_lengths = 1;
397
398         if (s->use_noise_coding) {
399                 /* init the noise generator */
400                 if (s->use_exp_vlc)
401                         s->noise_mult = 0.02;
402                 else
403                         s->noise_mult = 0.04;
404
405                 {
406                         unsigned int seed;
407                         float norm;
408                         seed = 1;
409                         norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * s->noise_mult;
410                         for (i = 0; i < NOISE_TAB_SIZE; i++) {
411                                 seed = seed * 314159 + 1;
412                                 s->noise_table[i] = (float) ((int) seed) * norm;
413                         }
414                 }
415         }
416
417         /* choose the VLC tables for the coefficients */
418         coef_vlc_table = 2;
419         if (ahi->sample_rate >= 32000) {
420                 if (bps1 < 0.72)
421                         coef_vlc_table = 0;
422                 else if (bps1 < 1.16)
423                         coef_vlc_table = 1;
424         }
425         s->coef_vlcs[0] = &coef_vlcs[coef_vlc_table * 2];
426         s->coef_vlcs[1] = &coef_vlcs[coef_vlc_table * 2 + 1];
427         init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0],
428                 &s->int_table[0], s->coef_vlcs[0]);
429         init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1],
430                 &s->int_table[1], s->coef_vlcs[1]);
431         return 0;
432 }
433
434 static void wma_lsp_to_curve_init(struct private_wmadec_data *s, int frame_len)
435 {
436         float wdel, a, b;
437         int i, e, m;
438
439         wdel = M_PI / frame_len;
440         for (i = 0; i < frame_len; i++)
441                 s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
442
443         /* tables for x^-0.25 computation */
444         for (i = 0; i < 256; i++) {
445                 e = i - 126;
446                 s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
447         }
448
449         /* These two tables are needed to avoid two operations in pow_m1_4. */
450         b = 1.0;
451         for (i = (1 << LSP_POW_BITS) - 1; i >= 0; i--) {
452                 m = (1 << LSP_POW_BITS) + i;
453                 a = (float) m *(0.5 / (1 << LSP_POW_BITS));
454                 a = pow(a, -0.25);
455                 s->lsp_pow_m_table1[i] = 2 * a - b;
456                 s->lsp_pow_m_table2[i] = b - a;
457                 b = a;
458         }
459 }
460
461 static int wma_decode_init(char *initial_buf, int len, struct private_wmadec_data **result)
462 {
463         struct private_wmadec_data *s;
464         int ret, i;
465
466         PARA_NOTICE_LOG("initial buf: %d bytes\n", len);
467         s = para_calloc(sizeof(*s));
468         ret = read_asf_header(initial_buf, len, &s->ahi);
469         if (ret <= 0) {
470                 free(s);
471                 return ret;
472         }
473
474         s->use_exp_vlc = s->ahi.flags2 & 0x0001;
475         s->use_bit_reservoir = s->ahi.flags2 & 0x0002;
476         s->use_variable_block_len = s->ahi.flags2 & 0x0004;
477
478         ret = wma_init(s, s->ahi.flags2, &s->ahi);
479         if (ret < 0)
480                 return ret;
481         /* init MDCT */
482         for (i = 0; i < s->nb_block_sizes; i++) {
483                 ret = imdct_init(s->frame_len_bits - i + 1, &s->mdct_ctx[i]);
484                 if (ret < 0)
485                         return ret;
486         }
487         if (s->use_noise_coding) {
488                 PARA_INFO_LOG("using noise coding\n");
489                 init_vlc(&s->hgain_vlc, HGAINVLCBITS,
490                         sizeof(ff_wma_hgain_huffbits), ff_wma_hgain_huffbits,
491                         1, 1, ff_wma_hgain_huffcodes, 2, 2);
492         }
493
494         if (s->use_exp_vlc) {
495                 PARA_INFO_LOG("using exp_vlc\n");
496                 init_vlc(&s->exp_vlc, EXPVLCBITS,
497                 sizeof(ff_wma_scale_huffbits), ff_wma_scale_huffbits,
498                 1, 1, ff_wma_scale_huffcodes, 4, 4);
499         } else {
500                 PARA_INFO_LOG("using curve\n");
501                 wma_lsp_to_curve_init(s, s->frame_len);
502         }
503         *result = s;
504         return s->ahi.header_len;
505 }
506
507 /**
508  * compute x^-0.25 with an exponent and mantissa table. We use linear
509  * interpolation to reduce the mantissa table size at a small speed
510  * expense (linear interpolation approximately doubles the number of
511  * bits of precision).
512  */
513 static inline float pow_m1_4(struct private_wmadec_data *s, float x)
514 {
515         union {
516                 float f;
517                 unsigned int v;
518         } u, t;
519         unsigned int e, m;
520         float a, b;
521
522         u.f = x;
523         e = u.v >> 23;
524         m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
525         /* build interpolation scale: 1 <= t < 2. */
526         t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
527         a = s->lsp_pow_m_table1[m];
528         b = s->lsp_pow_m_table2[m];
529         return s->lsp_pow_e_table[e] * (a + b * t.f);
530 }
531
532 static void wma_lsp_to_curve(struct private_wmadec_data *s,
533                 float *out, float *val_max_ptr, int n, float *lsp)
534 {
535         int i, j;
536         float p, q, w, v, val_max;
537
538         val_max = 0;
539         for (i = 0; i < n; i++) {
540                 p = 0.5f;
541                 q = 0.5f;
542                 w = s->lsp_cos_table[i];
543                 for (j = 1; j < NB_LSP_COEFS; j += 2) {
544                         q *= w - lsp[j - 1];
545                         p *= w - lsp[j];
546                 }
547                 p *= p * (2.0f - w);
548                 q *= q * (2.0f + w);
549                 v = p + q;
550                 v = pow_m1_4(s, v);
551                 if (v > val_max)
552                         val_max = v;
553                 out[i] = v;
554         }
555         *val_max_ptr = val_max;
556 }
557
558 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
559 static void decode_exp_lsp(struct private_wmadec_data *s, int ch)
560 {
561         float lsp_coefs[NB_LSP_COEFS];
562         int val, i;
563
564         for (i = 0; i < NB_LSP_COEFS; i++) {
565                 if (i == 0 || i >= 8)
566                         val = get_bits(&s->gb, 3);
567                 else
568                         val = get_bits(&s->gb, 4);
569                 lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
570         }
571
572         wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
573                          s->block_len, lsp_coefs);
574 }
575
576 /*
577  * Parse a vlc code, faster then get_vlc().
578  *
579  * \param bits The number of bits which will be read at once, must be
580  * identical to nb_bits in init_vlc()
581  *
582  * \param max_depth The number of times bits bits must be read to completely
583  * read the longest vlc code = (max_vlc_length + bits - 1) / bits.
584  */
585 static int get_vlc2(struct getbit_context *s, VLC_TYPE(*table)[2],
586                 int bits, int max_depth)
587 {
588         int code;
589
590         OPEN_READER(re, s)
591         UPDATE_CACHE(re, s)
592         GET_VLC(code, re, s, table, bits, max_depth)
593         CLOSE_READER(re, s)
594         return code;
595 }
596
597 /* Decode exponents coded with VLC codes. */
598 static int decode_exp_vlc(struct private_wmadec_data *s, int ch)
599 {
600         int last_exp, n, code;
601         const uint16_t *ptr, *band_ptr;
602         float v, *q, max_scale, *q_end;
603
604         band_ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
605         ptr = band_ptr;
606         q = s->exponents[ch];
607         q_end = q + s->block_len;
608         max_scale = 0;
609         last_exp = 36;
610
611         while (q < q_end) {
612                 code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
613                 if (code < 0)
614                         return -1;
615                 /* NOTE: this offset is the same as MPEG4 AAC ! */
616                 last_exp += code - 60;
617                 /* XXX: use a table */
618                 v = pow(10, last_exp * (1.0 / 16.0));
619                 if (v > max_scale)
620                         max_scale = v;
621                 n = *ptr++;
622                 do {
623                         *q++ = v;
624                 } while (--n);
625         }
626         s->max_exponent[ch] = max_scale;
627         return 0;
628 }
629
630 /* compute src0 * src1 + src2 */
631 static inline void vector_mult_add(float *dst, const float *src0, const float *src1,
632                 const float *src2, int len)
633 {
634         int i;
635
636         for (i = 0; i < len; i++)
637                 dst[i] = src0[i] * src1[i] + src2[i];
638 }
639
640 static inline void vector_mult_reverse(float *dst, const float *src0,
641                 const float *src1, int len)
642 {
643         int i;
644
645         src1 += len - 1;
646         for (i = 0; i < len; i++)
647                 dst[i] = src0[i] * src1[-i];
648 }
649
650 /**
651  * Apply MDCT window and add into output.
652  *
653  * We ensure that when the windows overlap their squared sum
654  * is always 1 (MDCT reconstruction rule).
655  */
656 static void wma_window(struct private_wmadec_data *s, float *out)
657 {
658         float *in = s->output;
659         int block_len, bsize, n;
660
661         /* left part */
662         if (s->block_len_bits <= s->prev_block_len_bits) {
663                 block_len = s->block_len;
664                 bsize = s->frame_len_bits - s->block_len_bits;
665                 vector_mult_add(out, in, s->windows[bsize], out, block_len);
666         } else {
667                 block_len = 1 << s->prev_block_len_bits;
668                 n = (s->block_len - block_len) / 2;
669                 bsize = s->frame_len_bits - s->prev_block_len_bits;
670                 vector_mult_add(out + n, in + n, s->windows[bsize], out + n,
671                         block_len);
672                 memcpy(out + n + block_len, in + n + block_len,
673                         n * sizeof(float));
674         }
675         out += s->block_len;
676         in += s->block_len;
677         /* right part */
678         if (s->block_len_bits <= s->next_block_len_bits) {
679                 block_len = s->block_len;
680                 bsize = s->frame_len_bits - s->block_len_bits;
681                 vector_mult_reverse(out, in, s->windows[bsize], block_len);
682         } else {
683                 block_len = 1 << s->next_block_len_bits;
684                 n = (s->block_len - block_len) / 2;
685                 bsize = s->frame_len_bits - s->next_block_len_bits;
686                 memcpy(out, in, n * sizeof(float));
687                 vector_mult_reverse(out + n, in + n, s->windows[bsize],
688                         block_len);
689                 memset(out + n + block_len, 0, n * sizeof(float));
690         }
691 }
692
693 static int wma_total_gain_to_bits(int total_gain)
694 {
695         if (total_gain < 15)
696                 return 13;
697         else if (total_gain < 32)
698                 return 12;
699         else if (total_gain < 40)
700                 return 11;
701         else if (total_gain < 45)
702                 return 10;
703         else
704                 return 9;
705 }
706
707 /**
708  * @return 0 if OK. 1 if last block of frame. return -1 if
709  * unrecorrable error.
710  */
711 static int wma_decode_block(struct private_wmadec_data *s)
712 {
713         int n, v, ch, code, bsize;
714         int coef_nb_bits, total_gain;
715         int nb_coefs[MAX_CHANNELS];
716         float mdct_norm;
717
718         /* compute current block length */
719         if (s->use_variable_block_len) {
720                 n = wma_log2(s->nb_block_sizes - 1) + 1;
721
722                 if (s->reset_block_lengths) {
723                         s->reset_block_lengths = 0;
724                         v = get_bits(&s->gb, n);
725                         if (v >= s->nb_block_sizes)
726                                 return -1;
727                         s->prev_block_len_bits = s->frame_len_bits - v;
728                         v = get_bits(&s->gb, n);
729                         if (v >= s->nb_block_sizes)
730                                 return -1;
731                         s->block_len_bits = s->frame_len_bits - v;
732                 } else {
733                         /* update block lengths */
734                         s->prev_block_len_bits = s->block_len_bits;
735                         s->block_len_bits = s->next_block_len_bits;
736                 }
737                 v = get_bits(&s->gb, n);
738                 if (v >= s->nb_block_sizes)
739                         return -1;
740                 s->next_block_len_bits = s->frame_len_bits - v;
741         } else {
742                 /* fixed block len */
743                 s->next_block_len_bits = s->frame_len_bits;
744                 s->prev_block_len_bits = s->frame_len_bits;
745                 s->block_len_bits = s->frame_len_bits;
746         }
747
748         /* now check if the block length is coherent with the frame length */
749         s->block_len = 1 << s->block_len_bits;
750         if ((s->block_pos + s->block_len) > s->frame_len)
751                 return -E_INCOHERENT_BLOCK_LEN;
752
753         if (s->ahi.channels == 2)
754                 s->ms_stereo = get_bits1(&s->gb);
755         v = 0;
756         for (ch = 0; ch < s->ahi.channels; ch++) {
757                 int a = get_bits1(&s->gb);
758                 s->channel_coded[ch] = a;
759                 v |= a;
760         }
761
762         bsize = s->frame_len_bits - s->block_len_bits;
763
764         /* if no channel coded, no need to go further */
765         /* XXX: fix potential framing problems */
766         if (!v)
767                 goto next;
768
769         /* read total gain and extract corresponding number of bits for
770            coef escape coding */
771         total_gain = 1;
772         for (;;) {
773                 int a = get_bits(&s->gb, 7);
774                 total_gain += a;
775                 if (a != 127)
776                         break;
777         }
778
779         coef_nb_bits = wma_total_gain_to_bits(total_gain);
780
781         /* compute number of coefficients */
782         n = s->coefs_end[bsize] - s->coefs_start;
783         for (ch = 0; ch < s->ahi.channels; ch++)
784                 nb_coefs[ch] = n;
785
786         /* complex coding */
787         if (s->use_noise_coding) {
788                 for (ch = 0; ch < s->ahi.channels; ch++) {
789                         if (s->channel_coded[ch]) {
790                                 int i, m, a;
791                                 m = s->exponent_high_sizes[bsize];
792                                 for (i = 0; i < m; i++) {
793                                         a = get_bits1(&s->gb);
794                                         s->high_band_coded[ch][i] = a;
795                                         /* if noise coding, the coefficients are not transmitted */
796                                         if (a)
797                                                 nb_coefs[ch] -=
798                                                     s->
799                                                     exponent_high_bands[bsize]
800                                                     [i];
801                                 }
802                         }
803                 }
804                 for (ch = 0; ch < s->ahi.channels; ch++) {
805                         if (s->channel_coded[ch]) {
806                                 int i, val;
807
808                                 n = s->exponent_high_sizes[bsize];
809                                 val = (int) 0x80000000;
810                                 for (i = 0; i < n; i++) {
811                                         if (s->high_band_coded[ch][i]) {
812                                                 if (val == (int) 0x80000000) {
813                                                         val =
814                                                             get_bits(&s->gb,
815                                                                      7) - 19;
816                                                 } else {
817                                                         code =
818                                                             get_vlc2(&s->gb,
819                                                                      s->
820                                                                      hgain_vlc.
821                                                                      table,
822                                                                      HGAINVLCBITS,
823                                                                      HGAINMAX);
824                                                         if (code < 0)
825                                                                 return -1;
826                                                         val += code - 18;
827                                                 }
828                                                 s->high_band_values[ch][i] =
829                                                     val;
830                                         }
831                                 }
832                         }
833                 }
834         }
835
836         /* exponents can be reused in short blocks. */
837         if ((s->block_len_bits == s->frame_len_bits) || get_bits1(&s->gb)) {
838                 for (ch = 0; ch < s->ahi.channels; ch++) {
839                         if (s->channel_coded[ch]) {
840                                 if (s->use_exp_vlc) {
841                                         if (decode_exp_vlc(s, ch) < 0)
842                                                 return -1;
843                                 } else {
844                                         decode_exp_lsp(s, ch);
845                                 }
846                                 s->exponents_bsize[ch] = bsize;
847                         }
848                 }
849         }
850
851         /* parse spectral coefficients : just RLE encoding */
852         for (ch = 0; ch < s->ahi.channels; ch++) {
853                 if (s->channel_coded[ch]) {
854                         struct vlc *coef_vlc;
855                         int level, run, sign, tindex;
856                         int16_t *ptr, *eptr;
857                         const uint16_t *level_table, *run_table;
858
859                         /* special VLC tables are used for ms stereo because
860                            there is potentially less energy there */
861                         tindex = (ch == 1 && s->ms_stereo);
862                         coef_vlc = &s->coef_vlc[tindex];
863                         run_table = s->run_table[tindex];
864                         level_table = s->level_table[tindex];
865                         /* XXX: optimize */
866                         ptr = &s->coefs1[ch][0];
867                         eptr = ptr + nb_coefs[ch];
868                         memset(ptr, 0, s->block_len * sizeof(int16_t));
869                         for (;;) {
870                                 code =
871                                     get_vlc2(&s->gb, coef_vlc->table, VLCBITS,
872                                              VLCMAX);
873                                 if (code < 0)
874                                         return -1;
875                                 if (code == 1) {
876                                         /* EOB */
877                                         break;
878                                 } else if (code == 0) {
879                                         /* escape */
880                                         level = get_bits(&s->gb, coef_nb_bits);
881                                         /* NOTE: this is rather suboptimal. reading
882                                            block_len_bits would be better */
883                                         run =
884                                             get_bits(&s->gb, s->frame_len_bits);
885                                 } else {
886                                         /* normal code */
887                                         run = run_table[code];
888                                         level = level_table[code];
889                                 }
890                                 sign = get_bits1(&s->gb);
891                                 if (!sign)
892                                         level = -level;
893                                 ptr += run;
894                                 if (ptr >= eptr) {
895                                         PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
896                                         break;
897                                 }
898                                 *ptr++ = level;
899                                 /* NOTE: EOB can be omitted */
900                                 if (ptr >= eptr)
901                                         break;
902                         }
903                 }
904         }
905
906         /* normalize */
907         {
908                 int n4 = s->block_len / 2;
909                 mdct_norm = 1.0 / (float) n4;
910         }
911
912         /* finally compute the MDCT coefficients */
913         for (ch = 0; ch < s->ahi.channels; ch++) {
914                 if (s->channel_coded[ch]) {
915                         int16_t *coefs1;
916                         float *coefs, *exponents, mult, mult1, noise;
917                         int i, j, n1, last_high_band, esize;
918                         float exp_power[HIGH_BAND_MAX_SIZE];
919
920                         coefs1 = s->coefs1[ch];
921                         exponents = s->exponents[ch];
922                         esize = s->exponents_bsize[ch];
923                         mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
924                         mult *= mdct_norm;
925                         coefs = s->coefs[ch];
926                         if (s->use_noise_coding) {
927                                 mult1 = mult;
928                                 /* very low freqs : noise */
929                                 for (i = 0; i < s->coefs_start; i++) {
930                                         *coefs++ =
931                                             s->noise_table[s->noise_index] *
932                                             exponents[i << bsize >> esize] *
933                                             mult1;
934                                         s->noise_index =
935                                             (s->noise_index +
936                                              1) & (NOISE_TAB_SIZE - 1);
937                                 }
938
939                                 n1 = s->exponent_high_sizes[bsize];
940
941                                 /* compute power of high bands */
942                                 exponents = s->exponents[ch] +
943                                     (s->high_band_start[bsize] << bsize);
944                                 last_high_band = 0;     /* avoid warning */
945                                 for (j = 0; j < n1; j++) {
946                                         n = s->exponent_high_bands[s->
947                                                                    frame_len_bits
948                                                                    -
949                                                                    s->
950                                                                    block_len_bits]
951                                             [j];
952                                         if (s->high_band_coded[ch][j]) {
953                                                 float e2, val;
954                                                 e2 = 0;
955                                                 for (i = 0; i < n; i++) {
956                                                         val = exponents[i << bsize
957                                                                       >> esize];
958                                                         e2 += val * val;
959                                                 }
960                                                 exp_power[j] = e2 / n;
961                                                 last_high_band = j;
962                                         }
963                                         exponents += n << bsize;
964                                 }
965
966                                 /* main freqs and high freqs */
967                                 exponents =
968                                     s->exponents[ch] +
969                                     (s->coefs_start << bsize);
970                                 for (j = -1; j < n1; j++) {
971                                         if (j < 0) {
972                                                 n = s->high_band_start[bsize] -
973                                                     s->coefs_start;
974                                         } else {
975                                                 n = s->exponent_high_bands[s->
976                                                                            frame_len_bits
977                                                                            -
978                                                                            s->
979                                                                            block_len_bits]
980                                                     [j];
981                                         }
982                                         if (j >= 0 && s->high_band_coded[ch][j]) {
983                                                 /* use noise with specified power */
984                                                 mult1 =
985                                                     sqrt(exp_power[j] /
986                                                          exp_power
987                                                          [last_high_band]);
988                                                 /* XXX: use a table */
989                                                 mult1 =
990                                                     mult1 * pow(10,
991                                                                 s->
992                                                                 high_band_values
993                                                                 [ch][j] * 0.05);
994                                                 mult1 =
995                                                     mult1 /
996                                                     (s->max_exponent[ch] *
997                                                      s->noise_mult);
998                                                 mult1 *= mdct_norm;
999                                                 for (i = 0; i < n; i++) {
1000                                                         noise =
1001                                                             s->noise_table[s->
1002                                                                            noise_index];
1003                                                         s->noise_index =
1004                                                             (s->noise_index +
1005                                                              1) &
1006                                                             (NOISE_TAB_SIZE -
1007                                                              1);
1008                                                         *coefs++ =
1009                                                             noise *
1010                                                             exponents[i << bsize
1011                                                                       >> esize]
1012                                                             * mult1;
1013                                                 }
1014                                                 exponents += n << bsize;
1015                                         } else {
1016                                                 /* coded values + small noise */
1017                                                 for (i = 0; i < n; i++) {
1018                                                         noise =
1019                                                             s->noise_table[s->
1020                                                                            noise_index];
1021                                                         s->noise_index =
1022                                                             (s->noise_index +
1023                                                              1) &
1024                                                             (NOISE_TAB_SIZE -
1025                                                              1);
1026                                                         *coefs++ =
1027                                                             ((*coefs1++) +
1028                                                              noise) *
1029                                                             exponents[i << bsize
1030                                                                       >> esize]
1031                                                             * mult;
1032                                                 }
1033                                                 exponents += n << bsize;
1034                                         }
1035                                 }
1036
1037                                 /* very high freqs : noise */
1038                                 n = s->block_len - s->coefs_end[bsize];
1039                                 mult1 =
1040                                     mult * exponents[((-1 << bsize)) >> esize];
1041                                 for (i = 0; i < n; i++) {
1042                                         *coefs++ =
1043                                             s->noise_table[s->noise_index] *
1044                                             mult1;
1045                                         s->noise_index =
1046                                             (s->noise_index +
1047                                              1) & (NOISE_TAB_SIZE - 1);
1048                                 }
1049                         } else {
1050                                 /* XXX: optimize more */
1051                                 for (i = 0; i < s->coefs_start; i++)
1052                                         *coefs++ = 0.0;
1053                                 n = nb_coefs[ch];
1054                                 for (i = 0; i < n; i++) {
1055                                         *coefs++ =
1056                                             coefs1[i] *
1057                                             exponents[i << bsize >> esize] *
1058                                             mult;
1059                                 }
1060                                 n = s->block_len - s->coefs_end[bsize];
1061                                 for (i = 0; i < n; i++)
1062                                         *coefs++ = 0.0;
1063                         }
1064                 }
1065         }
1066
1067         if (s->ms_stereo && s->channel_coded[1]) {
1068                 float a, b;
1069                 int i;
1070
1071                 /*
1072                  * Nominal case for ms stereo: we do it before mdct.
1073                  *
1074                  * No need to optimize this case because it should almost never
1075                  * happen.
1076                  */
1077                 if (!s->channel_coded[0]) {
1078                         PARA_NOTICE_LOG("rare ms-stereo\n");
1079                         memset(s->coefs[0], 0, sizeof(float) * s->block_len);
1080                         s->channel_coded[0] = 1;
1081                 }
1082                 for (i = 0; i < s->block_len; i++) {
1083                         a = s->coefs[0][i];
1084                         b = s->coefs[1][i];
1085                         s->coefs[0][i] = a + b;
1086                         s->coefs[1][i] = a - b;
1087                 }
1088         }
1089
1090 next:
1091         for (ch = 0; ch < s->ahi.channels; ch++) {
1092                 int n4, index;
1093
1094                 n = s->block_len;
1095                 n4 = s->block_len / 2;
1096                 if (s->channel_coded[ch])
1097                         imdct(s->mdct_ctx[bsize], s->output, s->coefs[ch]);
1098                 else if (!(s->ms_stereo && ch == 1))
1099                         memset(s->output, 0, sizeof(s->output));
1100
1101                 /* multiply by the window and add in the frame */
1102                 index = (s->frame_len / 2) + s->block_pos - n4;
1103                 wma_window(s, &s->frame_out[ch][index]);
1104         }
1105
1106         /* update block number */
1107         s->block_pos += s->block_len;
1108         if (s->block_pos >= s->frame_len)
1109                 return 1;
1110         else
1111                 return 0;
1112 }
1113
1114 /*
1115  * Clip a signed integer value into the -32768,32767 range.
1116  *
1117  * \param a The value to clip.
1118  *
1119  * \return The clipped value.
1120  */
1121 static inline int16_t av_clip_int16(int a)
1122 {
1123         if ((a + 32768) & ~65535)
1124                 return (a >> 31) ^ 32767;
1125         else
1126                 return a;
1127 }
1128
1129 /* Decode a frame of frame_len samples. */
1130 static int wma_decode_frame(struct private_wmadec_data *s, int16_t *samples)
1131 {
1132         int ret, i, n, ch, incr;
1133         int16_t *ptr;
1134         float *iptr;
1135
1136         /* read each block */
1137         s->block_pos = 0;
1138         for (;;) {
1139                 ret = wma_decode_block(s);
1140                 if (ret < 0)
1141                         return -1;
1142                 if (ret)
1143                         break;
1144         }
1145
1146         /* convert frame to integer */
1147         n = s->frame_len;
1148         incr = s->ahi.channels;
1149         for (ch = 0; ch < s->ahi.channels; ch++) {
1150                 ptr = samples + ch;
1151                 iptr = s->frame_out[ch];
1152
1153                 for (i = 0; i < n; i++) {
1154                         *ptr = av_clip_int16(lrintf(*iptr++));
1155                         ptr += incr;
1156                 }
1157                 /* prepare for next block */
1158                 memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
1159                         s->frame_len * sizeof(float));
1160         }
1161         return 0;
1162 }
1163
1164 static int wma_decode_superframe(struct private_wmadec_data *s, void *data,
1165                 int *data_size, const uint8_t *buf, int buf_size)
1166 {
1167         int ret, nb_frames, bit_offset, i, pos, len;
1168         uint8_t *q;
1169         int16_t *samples;
1170         static int frame_count;
1171
1172         if (buf_size == 0) {
1173                 s->last_superframe_len = 0;
1174                 return 0;
1175         }
1176         if (buf_size < s->ahi.block_align)
1177                 return 0;
1178         buf_size = s->ahi.block_align;
1179         samples = data;
1180         init_get_bits(&s->gb, buf, buf_size * 8);
1181         if (s->use_bit_reservoir) {
1182                 /* read super frame header */
1183                 skip_bits(&s->gb, 4);   /* super frame index */
1184                 nb_frames = get_bits(&s->gb, 4) - 1;
1185                 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1186                 ret = -E_WMA_OUTPUT_SPACE;
1187                 if ((nb_frames + 1) * s->ahi.channels * s->frame_len
1188                                 * sizeof(int16_t) > *data_size)
1189                         goto fail;
1190
1191                 bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
1192
1193                 if (s->last_superframe_len > 0) {
1194                         /* add bit_offset bits to last frame */
1195                         ret = -E_WMA_BAD_SUPERFRAME;
1196                         if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
1197                                         MAX_CODED_SUPERFRAME_SIZE)
1198                                 goto fail;
1199                         q = s->last_superframe + s->last_superframe_len;
1200                         len = bit_offset;
1201                         while (len > 7) {
1202                                 *q++ = get_bits(&s->gb, 8);
1203                                 len -= 8;
1204                         }
1205                         if (len > 0)
1206                                 *q++ = get_bits(&s->gb, len) << (8 - len);
1207
1208                         /* XXX: bit_offset bits into last frame */
1209                         init_get_bits(&s->gb, s->last_superframe,
1210                                 MAX_CODED_SUPERFRAME_SIZE * 8);
1211                         /* skip unused bits */
1212                         if (s->last_bitoffset > 0)
1213                                 skip_bits(&s->gb, s->last_bitoffset);
1214                         /*
1215                          * This frame is stored in the last superframe and in
1216                          * the current one.
1217                          */
1218                         ret = -E_WMA_DECODE;
1219                         if (wma_decode_frame(s, samples) < 0)
1220                                 goto fail;
1221                         frame_count++;
1222                         samples += s->ahi.channels * s->frame_len;
1223                 }
1224
1225                 /* read each frame starting from bit_offset */
1226                 pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
1227                 init_get_bits(&s->gb, buf + (pos >> 3),
1228                         (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3)) * 8);
1229                 len = pos & 7;
1230                 if (len > 0)
1231                         skip_bits(&s->gb, len);
1232
1233                 s->reset_block_lengths = 1;
1234                 for (i = 0; i < nb_frames; i++) {
1235                         ret = -E_WMA_DECODE;
1236                         if (wma_decode_frame(s, samples) < 0)
1237                                 goto fail;
1238                         frame_count++;
1239                         samples += s->ahi.channels * s->frame_len;
1240                 }
1241
1242                 /* we copy the end of the frame in the last frame buffer */
1243                 pos = get_bits_count(&s->gb) +
1244                         ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
1245                 s->last_bitoffset = pos & 7;
1246                 pos >>= 3;
1247                 len = buf_size - pos;
1248                 ret = -E_WMA_BAD_SUPERFRAME;
1249                 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0)
1250                         goto fail;
1251                 s->last_superframe_len = len;
1252                 memcpy(s->last_superframe, buf + pos, len);
1253         } else {
1254                 PARA_DEBUG_LOG("not using bit reservoir\n");
1255                 ret = -E_WMA_OUTPUT_SPACE;
1256                 if (s->ahi.channels * s->frame_len * sizeof(int16_t) > *data_size)
1257                         goto fail;
1258                 /* single frame decode */
1259                 ret = -E_WMA_DECODE;
1260                 if (wma_decode_frame(s, samples) < 0)
1261                         goto fail;
1262                 frame_count++;
1263                 samples += s->ahi.channels * s->frame_len;
1264         }
1265         PARA_DEBUG_LOG("frame_count: %d frame_len: %d, block_len: %d, "
1266                 "outbytes: %d, eaten: %d\n",
1267                 frame_count, s->frame_len, s->block_len,
1268                 (int8_t *) samples - (int8_t *) data, s->ahi.block_align);
1269         *data_size = (int8_t *)samples - (int8_t *)data;
1270         return s->ahi.block_align;
1271 fail:
1272         /* reset the bit reservoir on errors */
1273         s->last_superframe_len = 0;
1274         return ret;
1275 }
1276
1277 static ssize_t wmadec_convert(char *inbuffer, size_t len,
1278                 struct filter_node *fn)
1279 {
1280         int ret, out_size = fn->bufsize - fn->loaded;
1281         struct private_wmadec_data *pwd = fn->private_data;
1282
1283         if (out_size < 128 * 1024)
1284                 return 0;
1285         if (!pwd) {
1286                 ret = wma_decode_init(inbuffer, len, &pwd);
1287                 if (ret <= 0)
1288                         return ret;
1289                 fn->private_data = pwd;
1290                 fn->fc->channels = pwd->ahi.channels;
1291                 fn->fc->samplerate = pwd->ahi.sample_rate;
1292                 return pwd->ahi.header_len;
1293         }
1294         /* skip 31 bytes */
1295         if (len <= WMA_FRAME_SKIP + pwd->ahi.block_align)
1296                 return 0;
1297         ret = wma_decode_superframe(pwd, fn->buf + fn->loaded,
1298                 &out_size, (uint8_t *)inbuffer + WMA_FRAME_SKIP,
1299                 len - WMA_FRAME_SKIP);
1300         if (ret < 0)
1301                 return ret;
1302         fn->loaded += out_size;
1303         return ret + WMA_FRAME_SKIP;
1304 }
1305
1306 static void wmadec_close(struct filter_node *fn)
1307 {
1308         struct private_wmadec_data *pwd = fn->private_data;
1309
1310         if (!pwd)
1311                 return;
1312         wmadec_cleanup(pwd);
1313         free(fn->buf);
1314         fn->buf = NULL;
1315         free(fn->private_data);
1316         fn->private_data = NULL;
1317 }
1318
1319 static void wmadec_open(struct filter_node *fn)
1320 {
1321         fn->bufsize = 1024 * 1024;
1322         fn->buf = para_malloc(fn->bufsize);
1323         fn->private_data = NULL;
1324         fn->loaded = 0;
1325 }
1326
1327 /**
1328  * The init function of the wma decoder.
1329  *
1330  * \param f Its fields are filled in by the function.
1331  */
1332 void wmadec_filter_init(struct filter *f)
1333 {
1334         f->open = wmadec_open;
1335         f->close = wmadec_close;
1336         f->convert = wmadec_convert;
1337 }