]> git.tuebingen.mpg.de Git - paraslash.git/blob - wmadec_filter.c
692ea0f3dde1d25996a874aff00e1a6a1f7b043d
[paraslash.git] / wmadec_filter.c
1 /*
2  * WMA compatible decoder
3  *
4  * Extracted 2009 from the mplayer source code 2009-02-10.
5  *
6  * Copyright (c) 2002 The FFmpeg Project
7  *
8  * Licensed under the GNU Lesser General Public License.
9  * For licencing details see COPYING.LIB.
10  */
11
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
13
14 /*
15  * This decoder handles Microsoft Windows Media Audio data version 2.
16  */
17
18 #define _XOPEN_SOURCE 600
19
20 #include <math.h>
21 #include <regex.h>
22 #include <sys/select.h>
23
24 #include "para.h"
25 #include "error.h"
26 #include "list.h"
27 #include "ggo.h"
28 #include "string.h"
29 #include "sched.h"
30 #include "buffer_tree.h"
31 #include "filter.h"
32 #include "portable_io.h"
33 #include "bitstream.h"
34 #include "imdct.h"
35 #include "wma.h"
36 #include "wmadata.h"
37
38
39 /* size of blocks */
40 #define BLOCK_MIN_BITS 7
41 #define BLOCK_MAX_BITS 11
42 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
43
44 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
45
46 /* XXX: find exact max size */
47 #define HIGH_BAND_MAX_SIZE 16
48
49 /* XXX: is it a suitable value ? */
50 #define MAX_CODED_SUPERFRAME_SIZE 16384
51
52 #define MAX_CHANNELS 2
53
54 #define NOISE_TAB_SIZE 8192
55
56 #define LSP_POW_BITS 7
57
58 struct private_wmadec_data {
59         /** Information contained in the audio file header. */
60         struct asf_header_info ahi;
61         struct getbit_context gb;
62         /** Whether perceptual noise is added. */
63         int use_noise_coding;
64         /** Depends on number of the bits per second and the frame length. */
65         int byte_offset_bits;
66         /** Only used if ahi->use_exp_vlc is true. */
67         struct vlc exp_vlc;
68         uint16_t exponent_bands[BLOCK_NB_SIZES][25];
69         /** The index of the first coef in high band. */
70         int high_band_start[BLOCK_NB_SIZES];
71         /** Maximal number of coded coefficients. */
72         int coefs_end[BLOCK_NB_SIZES];
73         int exponent_high_sizes[BLOCK_NB_SIZES];
74         int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
75         struct vlc hgain_vlc;
76
77         /* coded values in high bands */
78         int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
79         int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
80
81         /* there are two possible tables for spectral coefficients */
82         struct vlc coef_vlc[2];
83         uint16_t *run_table[2];
84         uint16_t *level_table[2];
85         const struct coef_vlc_table *coef_vlcs[2];
86         /** Frame length in samples. */
87         int frame_len;
88         /** log2 of frame_len. */
89         int frame_len_bits;
90         /** Number of block sizes, one if !ahi->use_variable_block_len. */
91         int nb_block_sizes;
92         /* Whether to update block lengths from getbit context. */
93         bool reset_block_lengths;
94         /** log2 of current block length. */
95         int block_len_bits;
96         /** log2 of next block length. */
97         int next_block_len_bits;
98         /** log2 of previous block length. */
99         int prev_block_len_bits;
100         /** Block length in samples. */
101         int block_len;
102         /** Current position in frame. */
103         int block_pos;
104         /** True if mid/side stereo mode. */
105         uint8_t ms_stereo;
106         /** True if channel is coded. */
107         uint8_t channel_coded[MAX_CHANNELS];
108         /** log2 ratio frame/exp. length. */
109         int exponents_bsize[MAX_CHANNELS];
110
111         float exponents[MAX_CHANNELS][BLOCK_MAX_SIZE];
112         float max_exponent[MAX_CHANNELS];
113         int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
114         float coefs[MAX_CHANNELS][BLOCK_MAX_SIZE];
115         float output[BLOCK_MAX_SIZE * 2];
116         struct mdct_context *mdct_ctx[BLOCK_NB_SIZES];
117         float *windows[BLOCK_NB_SIZES];
118         /** Output buffer for one frame and the last for IMDCT windowing. */
119         float frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2];
120         /** Last frame info. */
121         uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
122         int last_bitoffset;
123         int last_superframe_len;
124         float noise_table[NOISE_TAB_SIZE];
125         int noise_index;
126         float noise_mult;       /* XXX: suppress that and integrate it in the noise array */
127         /* lsp_to_curve tables */
128         float lsp_cos_table[BLOCK_MAX_SIZE];
129         float lsp_pow_e_table[256];
130         float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
131         float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
132 };
133
134 #define EXPVLCBITS 8
135 #define HGAINVLCBITS 9
136 #define VLCBITS 9
137
138 /** \cond sine_winows */
139
140 #define SINE_WINDOW(x) static float sine_ ## x[x] __a_aligned(16)
141
142 SINE_WINDOW(128);
143 SINE_WINDOW(256);
144 SINE_WINDOW(512);
145 SINE_WINDOW(1024);
146 SINE_WINDOW(2048);
147 SINE_WINDOW(4096);
148
149 static float *sine_windows[6] = {
150         sine_128, sine_256, sine_512, sine_1024, sine_2048, sine_4096
151 };
152 /** \endcond sine_windows */
153
154 /* Generate a sine window. */
155 static void sine_window_init(float *window, int n)
156 {
157         int i;
158
159         for (i = 0; i < n; i++)
160                 window[i] = sinf((i + 0.5) * (M_PI / (2.0 * n)));
161 }
162
163 static void wmadec_cleanup(struct private_wmadec_data *pwd)
164 {
165         int i;
166
167         for (i = 0; i < pwd->nb_block_sizes; i++)
168                 imdct_end(pwd->mdct_ctx[i]);
169         if (pwd->ahi.use_exp_vlc)
170                 free_vlc(&pwd->exp_vlc);
171         if (pwd->use_noise_coding)
172                 free_vlc(&pwd->hgain_vlc);
173         for (i = 0; i < 2; i++) {
174                 free_vlc(&pwd->coef_vlc[i]);
175                 free(pwd->run_table[i]);
176                 free(pwd->level_table[i]);
177         }
178 }
179
180 static void init_coef_vlc(struct vlc *vlc, uint16_t **prun_table,
181                 uint16_t **plevel_table, const struct coef_vlc_table *vlc_table)
182 {
183         int n = vlc_table->n;
184         const uint8_t *table_bits = vlc_table->huffbits;
185         const uint32_t *table_codes = vlc_table->huffcodes;
186         const uint16_t *levels_table = vlc_table->levels;
187         uint16_t *run_table, *level_table;
188         int i, l, j, k, level;
189
190         init_vlc(vlc, VLCBITS, n, table_bits, table_codes, 4);
191
192         run_table = para_malloc(n * sizeof(uint16_t));
193         level_table = para_malloc(n * sizeof(uint16_t));
194         i = 2;
195         level = 1;
196         k = 0;
197         while (i < n) {
198                 l = levels_table[k++];
199                 for (j = 0; j < l; j++) {
200                         run_table[i] = j;
201                         level_table[i] = level;
202                         i++;
203                 }
204                 level++;
205         }
206         *prun_table = run_table;
207         *plevel_table = level_table;
208 }
209
210 /* compute the scale factor band sizes for each MDCT block size */
211 static void compute_scale_factor_band_sizes(struct private_wmadec_data *pwd,
212         float high_freq)
213 {
214         struct asf_header_info *ahi = &pwd->ahi;
215         int a, b, pos, lpos, k, block_len, i, j, n;
216         const uint8_t *table;
217
218         for (k = 0; k < pwd->nb_block_sizes; k++) {
219                 int exponent_size;
220
221                 block_len = pwd->frame_len >> k;
222                 table = NULL;
223                 a = pwd->frame_len_bits - BLOCK_MIN_BITS - k;
224                 if (a < 3) {
225                         if (ahi->sample_rate >= 44100)
226                                 table = exponent_band_44100[a];
227                         else if (ahi->sample_rate >= 32000)
228                                 table = exponent_band_32000[a];
229                         else if (ahi->sample_rate >= 22050)
230                                 table = exponent_band_22050[a];
231                 }
232                 if (table) {
233                         n = *table++;
234                         for (i = 0; i < n; i++)
235                                 pwd->exponent_bands[k][i] = table[i];
236                         exponent_size = n;
237                 } else {
238                         j = 0;
239                         lpos = 0;
240                         for (i = 0; i < 25; i++) {
241                                 a = wma_critical_freqs[i];
242                                 b = ahi->sample_rate;
243                                 pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
244                                 pos <<= 2;
245                                 if (pos > block_len)
246                                         pos = block_len;
247                                 if (pos > lpos)
248                                         pwd->exponent_bands[k][j++] = pos - lpos;
249                                 if (pos >= block_len)
250                                         break;
251                                 lpos = pos;
252                         }
253                         exponent_size = j;
254                 }
255
256                 /* max number of coefs */
257                 pwd->coefs_end[k] = (pwd->frame_len - ((pwd->frame_len * 9) / 100)) >> k;
258                 /* high freq computation */
259                 pwd->high_band_start[k] = (int) ((block_len * 2 * high_freq)
260                         / ahi->sample_rate + 0.5);
261                 n = exponent_size;
262                 j = 0;
263                 pos = 0;
264                 for (i = 0; i < n; i++) {
265                         int start, end;
266                         start = pos;
267                         pos += pwd->exponent_bands[k][i];
268                         end = pos;
269                         if (start < pwd->high_band_start[k])
270                                 start = pwd->high_band_start[k];
271                         if (end > pwd->coefs_end[k])
272                                 end = pwd->coefs_end[k];
273                         if (end > start)
274                                 pwd->exponent_high_bands[k][j++] = end - start;
275                 }
276                 pwd->exponent_high_sizes[k] = j;
277         }
278 }
279
280 static int wma_init(struct private_wmadec_data *pwd)
281 {
282         int i;
283         float bps1, high_freq;
284         volatile float bps;
285         int sample_rate1;
286         int coef_vlc_table;
287         struct asf_header_info *ahi = &pwd->ahi;
288         int flags2 = ahi->flags2;
289
290         if (ahi->sample_rate <= 0 || ahi->sample_rate > 50000
291                 || ahi->channels <= 0 || ahi->channels > 8
292                 || ahi->bit_rate <= 0)
293                 return -E_WMA_BAD_PARAMS;
294
295         /* compute MDCT block size */
296         if (ahi->sample_rate <= 16000)
297                 pwd->frame_len_bits = 9;
298         else if (ahi->sample_rate <= 22050)
299                 pwd->frame_len_bits = 10;
300         else
301                 pwd->frame_len_bits = 11;
302         pwd->frame_len = 1 << pwd->frame_len_bits;
303         if (pwd->ahi.use_variable_block_len) {
304                 int nb_max, nb;
305                 nb = ((flags2 >> 3) & 3) + 1;
306                 if ((ahi->bit_rate / ahi->channels) >= 32000)
307                         nb += 2;
308                 nb_max = pwd->frame_len_bits - BLOCK_MIN_BITS;
309                 if (nb > nb_max)
310                         nb = nb_max;
311                 pwd->nb_block_sizes = nb + 1;
312         } else
313                 pwd->nb_block_sizes = 1;
314
315         /* init rate dependent parameters */
316         pwd->use_noise_coding = 1;
317         high_freq = ahi->sample_rate * 0.5;
318
319         /* wma2 rates are normalized */
320         sample_rate1 = ahi->sample_rate;
321         if (sample_rate1 >= 44100)
322                 sample_rate1 = 44100;
323         else if (sample_rate1 >= 22050)
324                 sample_rate1 = 22050;
325         else if (sample_rate1 >= 16000)
326                 sample_rate1 = 16000;
327         else if (sample_rate1 >= 11025)
328                 sample_rate1 = 11025;
329         else if (sample_rate1 >= 8000)
330                 sample_rate1 = 8000;
331
332         bps = (float) ahi->bit_rate / (float) (ahi->channels * ahi->sample_rate);
333         pwd->byte_offset_bits = wma_log2((int) (bps * pwd->frame_len / 8.0 + 0.5)) + 2;
334         /*
335          * Compute high frequency value and choose if noise coding should be
336          * activated.
337          */
338         bps1 = bps;
339         if (ahi->channels == 2)
340                 bps1 = bps * 1.6;
341         if (sample_rate1 == 44100) {
342                 if (bps1 >= 0.61)
343                         pwd->use_noise_coding = 0;
344                 else
345                         high_freq = high_freq * 0.4;
346         } else if (sample_rate1 == 22050) {
347                 if (bps1 >= 1.16)
348                         pwd->use_noise_coding = 0;
349                 else if (bps1 >= 0.72)
350                         high_freq = high_freq * 0.7;
351                 else
352                         high_freq = high_freq * 0.6;
353         } else if (sample_rate1 == 16000) {
354                 if (bps > 0.5)
355                         high_freq = high_freq * 0.5;
356                 else
357                         high_freq = high_freq * 0.3;
358         } else if (sample_rate1 == 11025)
359                 high_freq = high_freq * 0.7;
360         else if (sample_rate1 == 8000) {
361                 if (bps <= 0.625)
362                         high_freq = high_freq * 0.5;
363                 else if (bps > 0.75)
364                         pwd->use_noise_coding = 0;
365                 else
366                         high_freq = high_freq * 0.65;
367         } else {
368                 if (bps >= 0.8)
369                         high_freq = high_freq * 0.75;
370                 else if (bps >= 0.6)
371                         high_freq = high_freq * 0.6;
372                 else
373                         high_freq = high_freq * 0.5;
374         }
375         PARA_INFO_LOG("channels=%u sample_rate=%u "
376                 "bitrate=%u block_align=%d\n",
377                 ahi->channels, ahi->sample_rate,
378                 ahi->bit_rate, ahi->block_align);
379         PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
380                 "high_freq=%f bitoffset=%d\n",
381                 pwd->frame_len, bps, bps1,
382                 high_freq, pwd->byte_offset_bits);
383         PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
384                 pwd->use_noise_coding, pwd->ahi.use_exp_vlc, pwd->nb_block_sizes);
385
386         compute_scale_factor_band_sizes(pwd, high_freq);
387         /* init MDCT windows : simple sinus window */
388         for (i = 0; i < pwd->nb_block_sizes; i++) {
389                 int n;
390                 n = 1 << (pwd->frame_len_bits - i);
391                 sine_window_init(sine_windows[pwd->frame_len_bits - i - 7], n);
392                 pwd->windows[i] = sine_windows[pwd->frame_len_bits - i - 7];
393         }
394
395         pwd->reset_block_lengths = true;
396
397         if (pwd->use_noise_coding) {
398                 /* init the noise generator */
399                 if (pwd->ahi.use_exp_vlc)
400                         pwd->noise_mult = 0.02;
401                 else
402                         pwd->noise_mult = 0.04;
403
404                 {
405                         unsigned int seed;
406                         float norm;
407                         seed = 1;
408                         norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd->noise_mult;
409                         for (i = 0; i < NOISE_TAB_SIZE; i++) {
410                                 seed = seed * 314159 + 1;
411                                 pwd->noise_table[i] = (float) ((int) seed) * norm;
412                         }
413                 }
414         }
415
416         /* choose the VLC tables for the coefficients */
417         coef_vlc_table = 2;
418         if (ahi->sample_rate >= 32000) {
419                 if (bps1 < 0.72)
420                         coef_vlc_table = 0;
421                 else if (bps1 < 1.16)
422                         coef_vlc_table = 1;
423         }
424         pwd->coef_vlcs[0] = &coef_vlcs[coef_vlc_table * 2];
425         pwd->coef_vlcs[1] = &coef_vlcs[coef_vlc_table * 2 + 1];
426         init_coef_vlc(&pwd->coef_vlc[0], &pwd->run_table[0], &pwd->level_table[0],
427                 pwd->coef_vlcs[0]);
428         init_coef_vlc(&pwd->coef_vlc[1], &pwd->run_table[1], &pwd->level_table[1],
429                 pwd->coef_vlcs[1]);
430         return 0;
431 }
432
433 static void wma_lsp_to_curve_init(struct private_wmadec_data *pwd)
434 {
435         float wdel, a, b;
436         int i, e, m;
437
438         wdel = M_PI / pwd->frame_len;
439         for (i = 0; i < pwd->frame_len; i++)
440                 pwd->lsp_cos_table[i] = 2.0f * cos(wdel * i);
441
442         /* tables for x^-0.25 computation */
443         for (i = 0; i < 256; i++) {
444                 e = i - 126;
445                 pwd->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
446         }
447
448         /* These two tables are needed to avoid two operations in pow_m1_4. */
449         b = 1.0;
450         for (i = (1 << LSP_POW_BITS) - 1; i >= 0; i--) {
451                 m = (1 << LSP_POW_BITS) + i;
452                 a = (float) m *(0.5 / (1 << LSP_POW_BITS));
453                 a = pow(a, -0.25);
454                 pwd->lsp_pow_m_table1[i] = 2 * a - b;
455                 pwd->lsp_pow_m_table2[i] = b - a;
456                 b = a;
457         }
458 }
459
460 static int wma_decode_init(char *initial_buf, int len, struct private_wmadec_data **result)
461 {
462         struct private_wmadec_data *pwd;
463         int ret, i;
464
465         PARA_NOTICE_LOG("initial buf: %d bytes\n", len);
466         pwd = para_calloc(sizeof(*pwd));
467         ret = read_asf_header(initial_buf, len, &pwd->ahi);
468         if (ret <= 0) {
469                 free(pwd);
470                 return ret;
471         }
472
473         ret = wma_init(pwd);
474         if (ret < 0)
475                 return ret;
476         /* init MDCT */
477         for (i = 0; i < pwd->nb_block_sizes; i++) {
478                 ret = imdct_init(pwd->frame_len_bits - i + 1, &pwd->mdct_ctx[i]);
479                 if (ret < 0)
480                         return ret;
481         }
482         if (pwd->use_noise_coding) {
483                 PARA_INFO_LOG("using noise coding\n");
484                 init_vlc(&pwd->hgain_vlc, HGAINVLCBITS,
485                         sizeof(wma_hgain_huffbits), wma_hgain_huffbits,
486                         wma_hgain_huffcodes, 2);
487         }
488
489         if (pwd->ahi.use_exp_vlc) {
490                 PARA_INFO_LOG("using exp_vlc\n");
491                 init_vlc(&pwd->exp_vlc, EXPVLCBITS, sizeof(wma_scale_huffbits),
492                         wma_scale_huffbits, wma_scale_huffcodes, 4);
493         } else {
494                 PARA_INFO_LOG("using curve\n");
495                 wma_lsp_to_curve_init(pwd);
496         }
497         *result = pwd;
498         return pwd->ahi.header_len;
499 }
500
501 /**
502  * compute x^-0.25 with an exponent and mantissa table. We use linear
503  * interpolation to reduce the mantissa table size at a small speed
504  * expense (linear interpolation approximately doubles the number of
505  * bits of precision).
506  */
507 static inline float pow_m1_4(struct private_wmadec_data *pwd, float x)
508 {
509         union {
510                 float f;
511                 unsigned int v;
512         } u, t;
513         unsigned int e, m;
514         float a, b;
515
516         u.f = x;
517         e = u.v >> 23;
518         m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
519         /* build interpolation scale: 1 <= t < 2. */
520         t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
521         a = pwd->lsp_pow_m_table1[m];
522         b = pwd->lsp_pow_m_table2[m];
523         return pwd->lsp_pow_e_table[e] * (a + b * t.f);
524 }
525
526 static void wma_lsp_to_curve(struct private_wmadec_data *pwd,
527                 float *out, float *val_max_ptr, int n, float *lsp)
528 {
529         int i, j;
530         float p, q, w, v, val_max;
531
532         val_max = 0;
533         for (i = 0; i < n; i++) {
534                 p = 0.5f;
535                 q = 0.5f;
536                 w = pwd->lsp_cos_table[i];
537                 for (j = 1; j < NB_LSP_COEFS; j += 2) {
538                         q *= w - lsp[j - 1];
539                         p *= w - lsp[j];
540                 }
541                 p *= p * (2.0f - w);
542                 q *= q * (2.0f + w);
543                 v = p + q;
544                 v = pow_m1_4(pwd, v);
545                 if (v > val_max)
546                         val_max = v;
547                 out[i] = v;
548         }
549         *val_max_ptr = val_max;
550 }
551
552 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
553 static void decode_exp_lsp(struct private_wmadec_data *pwd, int ch)
554 {
555         float lsp_coefs[NB_LSP_COEFS];
556         int val, i;
557
558         for (i = 0; i < NB_LSP_COEFS; i++) {
559                 if (i == 0 || i >= 8)
560                         val = get_bits(&pwd->gb, 3);
561                 else
562                         val = get_bits(&pwd->gb, 4);
563                 lsp_coefs[i] = wma_lsp_codebook[i][val];
564         }
565
566         wma_lsp_to_curve(pwd, pwd->exponents[ch], &pwd->max_exponent[ch],
567                 pwd->block_len, lsp_coefs);
568 }
569
570 /* Decode exponents coded with VLC codes. */
571 static int decode_exp_vlc(struct private_wmadec_data *pwd, int ch)
572 {
573         int last_exp, n, code;
574         const uint16_t *ptr, *band_ptr;
575         float v, *q, max_scale, *q_end;
576
577         band_ptr = pwd->exponent_bands[pwd->frame_len_bits - pwd->block_len_bits];
578         ptr = band_ptr;
579         q = pwd->exponents[ch];
580         q_end = q + pwd->block_len;
581         max_scale = 0;
582         last_exp = 36;
583
584         while (q < q_end) {
585                 code = get_vlc(&pwd->gb, pwd->exp_vlc.table, EXPVLCBITS);
586                 if (code < 0)
587                         return code;
588                 /* NOTE: this offset is the same as MPEG4 AAC ! */
589                 last_exp += code - 60;
590                 /* XXX: use a table */
591                 v = pow(10, last_exp * (1.0 / 16.0));
592                 if (v > max_scale)
593                         max_scale = v;
594                 n = *ptr++;
595                 do {
596                         *q++ = v;
597                 } while (--n);
598         }
599         pwd->max_exponent[ch] = max_scale;
600         return 0;
601 }
602
603 /* compute src0 * src1 + src2 */
604 static inline void vector_mult_add(float *dst, const float *src0, const float *src1,
605                 const float *src2, int len)
606 {
607         int i;
608
609         for (i = 0; i < len; i++)
610                 dst[i] = src0[i] * src1[i] + src2[i];
611 }
612
613 static inline void vector_mult_reverse(float *dst, const float *src0,
614                 const float *src1, int len)
615 {
616         int i;
617
618         src1 += len - 1;
619         for (i = 0; i < len; i++)
620                 dst[i] = src0[i] * src1[-i];
621 }
622
623 /**
624  * Apply MDCT window and add into output.
625  *
626  * We ensure that when the windows overlap their squared sum
627  * is always 1 (MDCT reconstruction rule).
628  */
629 static void wma_window(struct private_wmadec_data *pwd, float *out)
630 {
631         float *in = pwd->output;
632         int block_len, bsize, n;
633
634         /* left part */
635         if (pwd->block_len_bits <= pwd->prev_block_len_bits) {
636                 block_len = pwd->block_len;
637                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
638                 vector_mult_add(out, in, pwd->windows[bsize], out, block_len);
639         } else {
640                 block_len = 1 << pwd->prev_block_len_bits;
641                 n = (pwd->block_len - block_len) / 2;
642                 bsize = pwd->frame_len_bits - pwd->prev_block_len_bits;
643                 vector_mult_add(out + n, in + n, pwd->windows[bsize], out + n,
644                         block_len);
645                 memcpy(out + n + block_len, in + n + block_len,
646                         n * sizeof(float));
647         }
648         out += pwd->block_len;
649         in += pwd->block_len;
650         /* right part */
651         if (pwd->block_len_bits <= pwd->next_block_len_bits) {
652                 block_len = pwd->block_len;
653                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
654                 vector_mult_reverse(out, in, pwd->windows[bsize], block_len);
655         } else {
656                 block_len = 1 << pwd->next_block_len_bits;
657                 n = (pwd->block_len - block_len) / 2;
658                 bsize = pwd->frame_len_bits - pwd->next_block_len_bits;
659                 memcpy(out, in, n * sizeof(float));
660                 vector_mult_reverse(out + n, in + n, pwd->windows[bsize],
661                         block_len);
662                 memset(out + n + block_len, 0, n * sizeof(float));
663         }
664 }
665
666 static int wma_total_gain_to_bits(int total_gain)
667 {
668         if (total_gain < 15)
669                 return 13;
670         else if (total_gain < 32)
671                 return 12;
672         else if (total_gain < 40)
673                 return 11;
674         else if (total_gain < 45)
675                 return 10;
676         else
677                 return 9;
678 }
679
680 static int compute_high_band_values(struct private_wmadec_data *pwd,
681                 int bsize, int nb_coefs[MAX_CHANNELS])
682 {
683         int ch;
684
685         if (!pwd->use_noise_coding)
686                 return 0;
687         for (ch = 0; ch < pwd->ahi.channels; ch++) {
688                 int i, m, a;
689                 if (!pwd->channel_coded[ch])
690                         continue;
691                 m = pwd->exponent_high_sizes[bsize];
692                 for (i = 0; i < m; i++) {
693                         a = get_bit(&pwd->gb);
694                         pwd->high_band_coded[ch][i] = a;
695                         if (!a)
696                                 continue;
697                         nb_coefs[ch] -= pwd->exponent_high_bands[bsize][i];
698                 }
699         }
700         for (ch = 0; ch < pwd->ahi.channels; ch++) {
701                 int i, n, val;
702                 if (!pwd->channel_coded[ch])
703                         continue;
704                 n = pwd->exponent_high_sizes[bsize];
705                 val = (int)0x80000000;
706                 for (i = 0; i < n; i++) {
707                         if (!pwd->high_band_coded[ch][i])
708                                 continue;
709                         if (val == (int)0x80000000)
710                                 val = get_bits(&pwd->gb, 7) - 19;
711                         else {
712                                 int code = get_vlc(&pwd->gb,
713                                         pwd->hgain_vlc.table, HGAINVLCBITS);
714                                 if (code < 0)
715                                         return code;
716                                 val += code - 18;
717                         }
718                         pwd->high_band_values[ch][i] = val;
719                 }
720         }
721         return 1;
722 }
723
724 static void compute_mdct_coefficients(struct private_wmadec_data *pwd,
725                 int bsize, int total_gain, int nb_coefs[MAX_CHANNELS])
726 {
727         int ch;
728         float mdct_norm = 1.0 / (pwd->block_len / 2);
729
730         for (ch = 0; ch < pwd->ahi.channels; ch++) {
731                 int16_t *coefs1;
732                 float *coefs, *exponents, mult, mult1, noise;
733                 int i, j, n, n1, last_high_band, esize;
734                 float exp_power[HIGH_BAND_MAX_SIZE];
735
736                 if (!pwd->channel_coded[ch])
737                         continue;
738                 coefs1 = pwd->coefs1[ch];
739                 exponents = pwd->exponents[ch];
740                 esize = pwd->exponents_bsize[ch];
741                 mult = pow(10, total_gain * 0.05) / pwd->max_exponent[ch];
742                 mult *= mdct_norm;
743                 coefs = pwd->coefs[ch];
744                 if (!pwd->use_noise_coding) {
745                         /* XXX: optimize more */
746                         n = nb_coefs[ch];
747                         for (i = 0; i < n; i++)
748                                 *coefs++ = coefs1[i] *
749                                         exponents[i << bsize >> esize] * mult;
750                         n = pwd->block_len - pwd->coefs_end[bsize];
751                         for (i = 0; i < n; i++)
752                                 *coefs++ = 0.0;
753                         continue;
754                 }
755                 n1 = pwd->exponent_high_sizes[bsize];
756                 /* compute power of high bands */
757                 exponents = pwd->exponents[ch] +
758                         (pwd->high_band_start[bsize] << bsize);
759                 last_high_band = 0; /* avoid warning */
760                 for (j = 0; j < n1; j++) {
761                         n = pwd->exponent_high_bands[
762                                 pwd->frame_len_bits - pwd->block_len_bits][j];
763                         if (pwd->high_band_coded[ch][j]) {
764                                 float e2, val;
765                                 e2 = 0;
766                                 for (i = 0; i < n; i++) {
767                                         val = exponents[i << bsize >> esize];
768                                         e2 += val * val;
769                                 }
770                                 exp_power[j] = e2 / n;
771                                 last_high_band = j;
772                         }
773                         exponents += n << bsize;
774                 }
775                 /* main freqs and high freqs */
776                 exponents = pwd->exponents[ch];
777                 for (j = -1; j < n1; j++) {
778                         if (j < 0)
779                                 n = pwd->high_band_start[bsize];
780                         else
781                                 n = pwd->exponent_high_bands[pwd->frame_len_bits
782                                         - pwd->block_len_bits][j];
783                         if (j >= 0 && pwd->high_band_coded[ch][j]) {
784                                 /* use noise with specified power */
785                                 mult1 = sqrt(exp_power[j]
786                                         / exp_power[last_high_band]);
787                                 /* XXX: use a table */
788                                 mult1 *= pow(10, pwd->high_band_values[ch][j] * 0.05);
789                                 mult1 /= (pwd->max_exponent[ch] * pwd->noise_mult);
790                                 mult1 *= mdct_norm;
791                                 for (i = 0; i < n; i++) {
792                                         noise = pwd->noise_table[pwd->noise_index];
793                                         pwd->noise_index = (pwd->noise_index + 1)
794                                                 & (NOISE_TAB_SIZE - 1);
795                                         *coefs++ = noise * exponents[
796                                                 i << bsize >> esize] * mult1;
797                                 }
798                                 exponents += n << bsize;
799                         } else {
800                                 /* coded values + small noise */
801                                 for (i = 0; i < n; i++) {
802                                         noise = pwd->noise_table[pwd->noise_index];
803                                         pwd->noise_index = (pwd->noise_index + 1)
804                                                 & (NOISE_TAB_SIZE - 1);
805                                         *coefs++ = ((*coefs1++) + noise) *
806                                                 exponents[i << bsize >> esize]
807                                                 * mult;
808                                 }
809                                 exponents += n << bsize;
810                         }
811                 }
812                 /* very high freqs: noise */
813                 n = pwd->block_len - pwd->coefs_end[bsize];
814                 mult1 = mult * exponents[(-(1 << bsize)) >> esize];
815                 for (i = 0; i < n; i++) {
816                         *coefs++ = pwd->noise_table[pwd->noise_index] * mult1;
817                         pwd->noise_index = (pwd->noise_index + 1)
818                                 & (NOISE_TAB_SIZE - 1);
819                 }
820         }
821 }
822
823 /**
824  * Returns 0 if OK, 1 if last block of frame, negative on uncorrectable
825  * errors.
826  */
827 static int wma_decode_block(struct private_wmadec_data *pwd)
828 {
829         int ret, n, v, ch, code, bsize;
830         int coef_nb_bits, total_gain;
831         int nb_coefs[MAX_CHANNELS];
832
833         /* compute current block length */
834         if (pwd->ahi.use_variable_block_len) {
835                 n = wma_log2(pwd->nb_block_sizes - 1) + 1;
836
837                 if (pwd->reset_block_lengths) {
838                         pwd->reset_block_lengths = false;
839                         v = get_bits(&pwd->gb, n);
840                         if (v >= pwd->nb_block_sizes)
841                                 return -E_WMA_BLOCK_SIZE;
842                         pwd->prev_block_len_bits = pwd->frame_len_bits - v;
843                         v = get_bits(&pwd->gb, n);
844                         if (v >= pwd->nb_block_sizes)
845                                 return -E_WMA_BLOCK_SIZE;
846                         pwd->block_len_bits = pwd->frame_len_bits - v;
847                 } else {
848                         /* update block lengths */
849                         pwd->prev_block_len_bits = pwd->block_len_bits;
850                         pwd->block_len_bits = pwd->next_block_len_bits;
851                 }
852                 v = get_bits(&pwd->gb, n);
853                 if (v >= pwd->nb_block_sizes)
854                         return -E_WMA_BLOCK_SIZE;
855                 pwd->next_block_len_bits = pwd->frame_len_bits - v;
856         } else {
857                 /* fixed block len */
858                 pwd->next_block_len_bits = pwd->frame_len_bits;
859                 pwd->prev_block_len_bits = pwd->frame_len_bits;
860                 pwd->block_len_bits = pwd->frame_len_bits;
861         }
862
863         /* now check if the block length is coherent with the frame length */
864         pwd->block_len = 1 << pwd->block_len_bits;
865         if ((pwd->block_pos + pwd->block_len) > pwd->frame_len)
866                 return -E_INCOHERENT_BLOCK_LEN;
867
868         if (pwd->ahi.channels == 2)
869                 pwd->ms_stereo = get_bit(&pwd->gb);
870         v = 0;
871         for (ch = 0; ch < pwd->ahi.channels; ch++) {
872                 int a = get_bit(&pwd->gb);
873                 pwd->channel_coded[ch] = a;
874                 v |= a;
875         }
876
877         bsize = pwd->frame_len_bits - pwd->block_len_bits;
878
879         /* if no channel coded, no need to go further */
880         /* XXX: fix potential framing problems */
881         if (!v)
882                 goto next;
883
884         /*
885          * Read total gain and extract corresponding number of bits for coef
886          * escape coding.
887          */
888         total_gain = 1;
889         for (;;) {
890                 int a = get_bits(&pwd->gb, 7);
891                 total_gain += a;
892                 if (a != 127)
893                         break;
894         }
895
896         coef_nb_bits = wma_total_gain_to_bits(total_gain);
897
898         /* compute number of coefficients */
899         n = pwd->coefs_end[bsize];
900         for (ch = 0; ch < pwd->ahi.channels; ch++)
901                 nb_coefs[ch] = n;
902
903         ret = compute_high_band_values(pwd, bsize, nb_coefs);
904         if (ret < 0)
905                 return ret;
906
907         /* exponents can be reused in short blocks. */
908         if ((pwd->block_len_bits == pwd->frame_len_bits) || get_bit(&pwd->gb)) {
909                 for (ch = 0; ch < pwd->ahi.channels; ch++) {
910                         if (pwd->channel_coded[ch]) {
911                                 if (pwd->ahi.use_exp_vlc) {
912                                         ret = decode_exp_vlc(pwd, ch);
913                                         if (ret < 0)
914                                                 return ret;
915                                 } else
916                                         decode_exp_lsp(pwd, ch);
917                                 pwd->exponents_bsize[ch] = bsize;
918                         }
919                 }
920         }
921
922         /* parse spectral coefficients : just RLE encoding */
923         for (ch = 0; ch < pwd->ahi.channels; ch++) {
924                 struct vlc *coef_vlc;
925                 int level, run, tindex;
926                 int16_t *ptr, *eptr;
927                 const uint16_t *level_table, *run_table;
928
929                 if (!pwd->channel_coded[ch])
930                         continue;
931                 /*
932                  * special VLC tables are used for ms stereo because there is
933                  * potentially less energy there
934                  */
935                 tindex = (ch == 1 && pwd->ms_stereo);
936                 coef_vlc = &pwd->coef_vlc[tindex];
937                 run_table = pwd->run_table[tindex];
938                 level_table = pwd->level_table[tindex];
939                 /* XXX: optimize */
940                 ptr = &pwd->coefs1[ch][0];
941                 eptr = ptr + nb_coefs[ch];
942                 memset(ptr, 0, pwd->block_len * sizeof(int16_t));
943                 for (;;) {
944                         code = get_vlc(&pwd->gb, coef_vlc->table, VLCBITS);
945                         if (code < 0)
946                                 return code;
947                         if (code == 1) /* EOB */
948                                 break;
949                         if (code == 0) { /* escape */
950                                 level = get_bits(&pwd->gb, coef_nb_bits);
951                                 /* reading block_len_bits would be better */
952                                 run = get_bits(&pwd->gb, pwd->frame_len_bits);
953                         } else { /* normal code */
954                                 run = run_table[code];
955                                 level = level_table[code];
956                         }
957                         if (!get_bit(&pwd->gb))
958                                 level = -level;
959                         ptr += run;
960                         if (ptr >= eptr) {
961                                 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
962                                 break;
963                         }
964                         *ptr++ = level;
965                         if (ptr >= eptr) /* EOB can be omitted */
966                                 break;
967                 }
968         }
969         compute_mdct_coefficients(pwd, bsize, total_gain, nb_coefs);
970         if (pwd->ms_stereo && pwd->channel_coded[1]) {
971                 float a, b;
972                 int i;
973                 /*
974                  * Nominal case for ms stereo: we do it before mdct.
975                  *
976                  * No need to optimize this case because it should almost never
977                  * happen.
978                  */
979                 if (!pwd->channel_coded[0]) {
980                         PARA_NOTICE_LOG("rare ms-stereo\n");
981                         memset(pwd->coefs[0], 0, sizeof(float) * pwd->block_len);
982                         pwd->channel_coded[0] = 1;
983                 }
984                 for (i = 0; i < pwd->block_len; i++) {
985                         a = pwd->coefs[0][i];
986                         b = pwd->coefs[1][i];
987                         pwd->coefs[0][i] = a + b;
988                         pwd->coefs[1][i] = a - b;
989                 }
990         }
991 next:
992         for (ch = 0; ch < pwd->ahi.channels; ch++) {
993                 int n4, idx;
994
995                 n4 = pwd->block_len / 2;
996                 if (pwd->channel_coded[ch])
997                         imdct(pwd->mdct_ctx[bsize], pwd->output, pwd->coefs[ch]);
998                 else if (!(pwd->ms_stereo && ch == 1))
999                         memset(pwd->output, 0, sizeof(pwd->output));
1000
1001                 /* multiply by the window and add in the frame */
1002                 idx = (pwd->frame_len / 2) + pwd->block_pos - n4;
1003                 wma_window(pwd, &pwd->frame_out[ch][idx]);
1004         }
1005
1006         /* update block number */
1007         pwd->block_pos += pwd->block_len;
1008         if (pwd->block_pos >= pwd->frame_len)
1009                 return 1;
1010         else
1011                 return 0;
1012 }
1013
1014 /*
1015  * Clip a signed integer value into the -32768,32767 range.
1016  *
1017  * \param a The value to clip.
1018  *
1019  * \return The clipped value.
1020  */
1021 static inline int16_t av_clip_int16(int a)
1022 {
1023         if ((a + 32768) & ~65535)
1024                 return (a >> 31) ^ 32767;
1025         else
1026                 return a;
1027 }
1028
1029 /* Decode a frame of frame_len samples. */
1030 static int wma_decode_frame(struct private_wmadec_data *pwd, int16_t *samples)
1031 {
1032         int ret, i, ch;
1033         int16_t *ptr;
1034         float *iptr;
1035
1036         /* read each block */
1037         pwd->block_pos = 0;
1038         for (;;) {
1039                 ret = wma_decode_block(pwd);
1040                 if (ret < 0)
1041                         return ret;
1042                 if (ret)
1043                         break;
1044         }
1045
1046         /* convert frame to integer */
1047         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1048                 ptr = samples + ch;
1049                 iptr = pwd->frame_out[ch];
1050
1051                 for (i = 0; i < pwd->frame_len; i++) {
1052                         *ptr = av_clip_int16(lrintf(*iptr++));
1053                         ptr += pwd->ahi.channels;
1054                 }
1055                 /* prepare for next block */
1056                 memmove(&pwd->frame_out[ch][0], &pwd->frame_out[ch][pwd->frame_len],
1057                         pwd->frame_len * sizeof(float));
1058         }
1059         return 0;
1060 }
1061
1062 static int wma_decode_superframe(struct private_wmadec_data *pwd, void *data,
1063                 int *data_size, const uint8_t *buf, int buf_size)
1064 {
1065         int ret;
1066         int16_t *samples;
1067
1068         if (buf_size == 0) {
1069                 pwd->last_superframe_len = 0;
1070                 *data_size = 0;
1071                 return 0;
1072         }
1073         if (buf_size < pwd->ahi.block_align) {
1074                 *data_size = 0;
1075                 return 0;
1076         }
1077         buf_size = pwd->ahi.block_align;
1078         samples = data;
1079         init_get_bits(&pwd->gb, buf, buf_size);
1080         if (pwd->ahi.use_bit_reservoir) {
1081                 int i, nb_frames, bit_offset, pos, len;
1082                 uint8_t *q;
1083
1084                 /* read super frame header */
1085                 skip_bits(&pwd->gb, 4); /* super frame index */
1086                 nb_frames = get_bits(&pwd->gb, 4) - 1;
1087                 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1088                 ret = -E_WMA_OUTPUT_SPACE;
1089                 if ((nb_frames + 1) * pwd->ahi.channels * pwd->frame_len
1090                                 * sizeof(int16_t) > *data_size)
1091                         goto fail;
1092
1093                 bit_offset = get_bits(&pwd->gb, pwd->byte_offset_bits + 3);
1094
1095                 if (pwd->last_superframe_len > 0) {
1096                         /* add bit_offset bits to last frame */
1097                         ret = -E_WMA_BAD_SUPERFRAME;
1098                         if ((pwd->last_superframe_len + ((bit_offset + 7) >> 3)) >
1099                                         MAX_CODED_SUPERFRAME_SIZE)
1100                                 goto fail;
1101                         q = pwd->last_superframe + pwd->last_superframe_len;
1102                         len = bit_offset;
1103                         while (len > 7) {
1104                                 *q++ = get_bits(&pwd->gb, 8);
1105                                 len -= 8;
1106                         }
1107                         if (len > 0)
1108                                 *q++ = get_bits(&pwd->gb, len) << (8 - len);
1109
1110                         /* XXX: bit_offset bits into last frame */
1111                         init_get_bits(&pwd->gb, pwd->last_superframe,
1112                                 MAX_CODED_SUPERFRAME_SIZE);
1113                         /* skip unused bits */
1114                         if (pwd->last_bitoffset > 0)
1115                                 skip_bits(&pwd->gb, pwd->last_bitoffset);
1116                         /*
1117                          * This frame is stored in the last superframe and in
1118                          * the current one.
1119                          */
1120                         ret = wma_decode_frame(pwd, samples);
1121                         if (ret < 0)
1122                                 goto fail;
1123                         samples += pwd->ahi.channels * pwd->frame_len;
1124                 }
1125
1126                 /* read each frame starting from bit_offset */
1127                 pos = bit_offset + 4 + 4 + pwd->byte_offset_bits + 3;
1128                 init_get_bits(&pwd->gb, buf + (pos >> 3),
1129                         (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3)));
1130                 len = pos & 7;
1131                 if (len > 0)
1132                         skip_bits(&pwd->gb, len);
1133
1134                 pwd->reset_block_lengths = true;
1135                 for (i = 0; i < nb_frames; i++) {
1136                         ret = wma_decode_frame(pwd, samples);
1137                         if (ret < 0)
1138                                 goto fail;
1139                         samples += pwd->ahi.channels * pwd->frame_len;
1140                 }
1141
1142                 /* we copy the end of the frame in the last frame buffer */
1143                 pos = get_bits_count(&pwd->gb) +
1144                         ((bit_offset + 4 + 4 + pwd->byte_offset_bits + 3) & ~7);
1145                 pwd->last_bitoffset = pos & 7;
1146                 pos >>= 3;
1147                 len = buf_size - pos;
1148                 ret = -E_WMA_BAD_SUPERFRAME;
1149                 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0)
1150                         goto fail;
1151                 pwd->last_superframe_len = len;
1152                 memcpy(pwd->last_superframe, buf + pos, len);
1153         } else {
1154                 PARA_DEBUG_LOG("not using bit reservoir\n");
1155                 ret = -E_WMA_OUTPUT_SPACE;
1156                 if (pwd->ahi.channels * pwd->frame_len * sizeof(int16_t) > *data_size)
1157                         goto fail;
1158                 /* single frame decode */
1159                 ret = wma_decode_frame(pwd, samples);
1160                 if (ret < 0)
1161                         goto fail;
1162                 samples += pwd->ahi.channels * pwd->frame_len;
1163         }
1164         PARA_DEBUG_LOG("frame_len: %d, block_len: %d, outbytes: %d, eaten: %d\n",
1165                 pwd->frame_len, pwd->block_len,
1166                 (int)((int8_t *)samples - (int8_t *)data), pwd->ahi.block_align);
1167         *data_size = (int8_t *)samples - (int8_t *)data;
1168         return pwd->ahi.block_align;
1169 fail:
1170         /* reset the bit reservoir on errors */
1171         pwd->last_superframe_len = 0;
1172         return ret;
1173 }
1174
1175 static void wmadec_close(struct filter_node *fn)
1176 {
1177         struct private_wmadec_data *pwd = fn->private_data;
1178
1179         if (!pwd)
1180                 return;
1181         wmadec_cleanup(pwd);
1182         free(fn->private_data);
1183         fn->private_data = NULL;
1184 }
1185
1186 static int wmadec_execute(struct btr_node *btrn, const char *cmd, char **result)
1187 {
1188         struct filter_node *fn = btr_context(btrn);
1189         struct private_wmadec_data *pwd = fn->private_data;
1190
1191         return decoder_execute(cmd, pwd->ahi.sample_rate, pwd->ahi.channels,
1192                 result);
1193 }
1194
1195 #define WMA_OUTPUT_BUFFER_SIZE (128 * 1024)
1196
1197 static int wmadec_post_select(__a_unused struct sched *s, void *context)
1198 {
1199         struct filter_node *fn = context;
1200         int ret, converted, out_size;
1201         struct private_wmadec_data *pwd = fn->private_data;
1202         struct btr_node *btrn = fn->btrn;
1203         size_t len;
1204         char *in, *out;
1205
1206 next_buffer:
1207         converted = 0;
1208         ret = btr_node_status(btrn, fn->min_iqs, BTR_NT_INTERNAL);
1209         if (ret < 0)
1210                 goto err;
1211         if (ret == 0)
1212                 return 0;
1213         btr_merge(btrn, fn->min_iqs);
1214         len = btr_next_buffer(btrn, &in);
1215         ret = -E_WMADEC_EOF;
1216         if (len < fn->min_iqs)
1217                 goto err;
1218         if (!pwd) {
1219                 ret = wma_decode_init(in, len, &pwd);
1220                 if (ret < 0)
1221                         goto err;
1222                 if (ret == 0) {
1223                         fn->min_iqs += 4096;
1224                         goto next_buffer;
1225                 }
1226                 fn->min_iqs = 2 * pwd->ahi.packet_size;
1227                 fn->private_data = pwd;
1228                 converted = pwd->ahi.header_len;
1229                 goto success;
1230         }
1231         fn->min_iqs = pwd->ahi.packet_size;
1232         if (fn->min_iqs > len)
1233                 goto success;
1234         out_size = WMA_OUTPUT_BUFFER_SIZE;
1235         out = para_malloc(out_size);
1236         ret = wma_decode_superframe(pwd, out, &out_size,
1237                 (uint8_t *)in + WMA_FRAME_SKIP, len - WMA_FRAME_SKIP);
1238         if (ret < 0) {
1239                 free(out);
1240                 goto err;
1241         }
1242         if (out_size > 0) {
1243                 out = para_realloc(out, out_size);
1244                 btr_add_output(out, out_size, btrn);
1245         } else
1246                 free(out);
1247         converted += pwd->ahi.packet_size;
1248 success:
1249         btr_consume(btrn, converted);
1250         return 0;
1251 err:
1252         assert(ret < 0);
1253         btr_remove_node(&fn->btrn);
1254         return ret;
1255 }
1256
1257 static void wmadec_open(struct filter_node *fn)
1258 {
1259         fn->private_data = NULL;
1260         fn->min_iqs = 4096;
1261 }
1262
1263 /**
1264  * The init function of the wma decoder.
1265  *
1266  * \param f Its fields are filled in by the function.
1267  */
1268 void wmadec_filter_init(struct filter *f)
1269 {
1270         f->open = wmadec_open;
1271         f->close = wmadec_close;
1272         f->execute = wmadec_execute;
1273         f->pre_select = generic_filter_pre_select;
1274         f->post_select = wmadec_post_select;
1275 }