]> git.tuebingen.mpg.de Git - paraslash.git/blob - wmadec_filter.c
7b4b1a28183d0b242eae01c7dafc8b799eb4dc17
[paraslash.git] / wmadec_filter.c
1 /*
2  * WMA compatible decoder
3  *
4  * Extracted 2009 from the mplayer source code 2009-02-10.
5  *
6  * Copyright (c) 2002 The FFmpeg Project
7  *
8  * Licensed under the GNU Lesser General Public License.
9  * For licencing details see COPYING.LIB.
10  */
11
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
13
14 /*
15  * This decoder handles Microsoft Windows Media Audio data version 2.
16  */
17
18 #define _XOPEN_SOURCE 600
19
20 #include <math.h>
21 #include <regex.h>
22 #include <sys/select.h>
23
24 #include "para.h"
25 #include "error.h"
26 #include "list.h"
27 #include "string.h"
28 #include "sched.h"
29 #include "buffer_tree.h"
30 #include "filter.h"
31 #include "portable_io.h"
32 #include "bitstream.h"
33 #include "imdct.h"
34 #include "wma.h"
35 #include "wmadata.h"
36
37
38 /* size of blocks */
39 #define BLOCK_MIN_BITS 7
40 #define BLOCK_MAX_BITS 11
41 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
42
43 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
44
45 /* XXX: find exact max size */
46 #define HIGH_BAND_MAX_SIZE 16
47
48 /* XXX: is it a suitable value ? */
49 #define MAX_CODED_SUPERFRAME_SIZE 16384
50
51 #define MAX_CHANNELS 2
52
53 #define NOISE_TAB_SIZE 8192
54
55 #define LSP_POW_BITS 7
56
57 struct private_wmadec_data {
58         /** Information contained in the audio file header. */
59         struct asf_header_info ahi;
60         struct getbit_context gb;
61         /** Whether perceptual noise is added. */
62         int use_noise_coding;
63         /** Depends on number of the bits per second and the frame length. */
64         int byte_offset_bits;
65         /** Only used if ahi->use_exp_vlc is true. */
66         struct vlc exp_vlc;
67         uint16_t exponent_bands[BLOCK_NB_SIZES][25];
68         /** The index of the first coef in high band. */
69         int high_band_start[BLOCK_NB_SIZES];
70         /** Maximal number of coded coefficients. */
71         int coefs_end[BLOCK_NB_SIZES];
72         int exponent_high_sizes[BLOCK_NB_SIZES];
73         int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
74         struct vlc hgain_vlc;
75
76         /* coded values in high bands */
77         int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
78         int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
79
80         /* there are two possible tables for spectral coefficients */
81         struct vlc coef_vlc[2];
82         uint16_t *run_table[2];
83         uint16_t *level_table[2];
84         /** Frame length in samples. */
85         int frame_len;
86         /** log2 of frame_len. */
87         int frame_len_bits;
88         /** Number of block sizes, one if !ahi->use_variable_block_len. */
89         int nb_block_sizes;
90         /* Whether to update block lengths from getbit context. */
91         bool reset_block_lengths;
92         /** log2 of current block length. */
93         int block_len_bits;
94         /** log2 of next block length. */
95         int next_block_len_bits;
96         /** log2 of previous block length. */
97         int prev_block_len_bits;
98         /** Block length in samples. */
99         int block_len;
100         /** Current position in frame. */
101         int block_pos;
102         /** True if mid/side stereo mode. */
103         uint8_t ms_stereo;
104         /** True if channel is coded. */
105         uint8_t channel_coded[MAX_CHANNELS];
106         /** log2 ratio frame/exp. length. */
107         int exponents_bsize[MAX_CHANNELS];
108
109         float exponents[MAX_CHANNELS][BLOCK_MAX_SIZE];
110         float max_exponent[MAX_CHANNELS];
111         int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
112         float coefs[MAX_CHANNELS][BLOCK_MAX_SIZE];
113         float output[BLOCK_MAX_SIZE * 2];
114         struct mdct_context *mdct_ctx[BLOCK_NB_SIZES];
115         float *windows[BLOCK_NB_SIZES];
116         /** Output buffer for one frame and the last for IMDCT windowing. */
117         float frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2];
118         /** Last frame info. */
119         uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
120         int last_bitoffset;
121         int last_superframe_len;
122         float noise_table[NOISE_TAB_SIZE];
123         int noise_index;
124         float noise_mult;       /* XXX: suppress that and integrate it in the noise array */
125         /* lsp_to_curve tables */
126         float lsp_cos_table[BLOCK_MAX_SIZE];
127         float lsp_pow_e_table[256];
128         float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
129         float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
130 };
131
132 #define EXPVLCBITS 8
133 #define HGAINVLCBITS 9
134 #define VLCBITS 9
135
136 /** \cond sine_winows */
137
138 #define SINE_WINDOW(x) static float sine_ ## x[x] __a_aligned(16)
139
140 SINE_WINDOW(128);
141 SINE_WINDOW(256);
142 SINE_WINDOW(512);
143 SINE_WINDOW(1024);
144 SINE_WINDOW(2048);
145 SINE_WINDOW(4096);
146
147 static float *sine_windows[6] = {
148         sine_128, sine_256, sine_512, sine_1024, sine_2048, sine_4096
149 };
150 /** \endcond sine_windows */
151
152 /* Generate a sine window. */
153 static void sine_window_init(float *window, int n)
154 {
155         int i;
156
157         for (i = 0; i < n; i++)
158                 window[i] = sinf((i + 0.5) * (M_PI / (2.0 * n)));
159 }
160
161 static void init_coef_vlc(struct private_wmadec_data *pwd, int sidx, int didx)
162 {
163         const struct coef_vlc_table *src = coef_vlcs + sidx;
164         struct vlc *dst = pwd->coef_vlc + didx;
165         int i, l, j, k, level, n = src->n;
166
167         init_vlc(dst, VLCBITS, n, src->huffbits, src->huffcodes, 4);
168         pwd->run_table[didx] = para_malloc(n * sizeof(uint16_t));
169         pwd->level_table[didx] = para_malloc(n * sizeof(uint16_t));
170         i = 2;
171         level = 1;
172         k = 0;
173         while (i < n) {
174                 l = src->levels[k++];
175                 for (j = 0; j < l; j++) {
176                         pwd->run_table[didx][i] = j;
177                         pwd->level_table[didx][i] = level;
178                         i++;
179                 }
180                 level++;
181         }
182 }
183
184 /* compute the scale factor band sizes for each MDCT block size */
185 static void compute_scale_factor_band_sizes(struct private_wmadec_data *pwd,
186         float high_freq)
187 {
188         struct asf_header_info *ahi = &pwd->ahi;
189         int a, b, pos, lpos, k, block_len, i, j, n;
190         const uint8_t *table;
191
192         for (k = 0; k < pwd->nb_block_sizes; k++) {
193                 int exponent_size;
194
195                 block_len = pwd->frame_len >> k;
196                 table = NULL;
197                 a = pwd->frame_len_bits - BLOCK_MIN_BITS - k;
198                 if (a < 3) {
199                         if (ahi->sample_rate >= 44100)
200                                 table = exponent_band_44100[a];
201                         else if (ahi->sample_rate >= 32000)
202                                 table = exponent_band_32000[a];
203                         else if (ahi->sample_rate >= 22050)
204                                 table = exponent_band_22050[a];
205                 }
206                 if (table) {
207                         n = *table++;
208                         for (i = 0; i < n; i++)
209                                 pwd->exponent_bands[k][i] = table[i];
210                         exponent_size = n;
211                 } else {
212                         j = 0;
213                         lpos = 0;
214                         for (i = 0; i < 25; i++) {
215                                 a = wma_critical_freqs[i];
216                                 b = ahi->sample_rate;
217                                 pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
218                                 pos <<= 2;
219                                 if (pos > block_len)
220                                         pos = block_len;
221                                 if (pos > lpos)
222                                         pwd->exponent_bands[k][j++] = pos - lpos;
223                                 if (pos >= block_len)
224                                         break;
225                                 lpos = pos;
226                         }
227                         exponent_size = j;
228                 }
229
230                 /* max number of coefs */
231                 pwd->coefs_end[k] = (pwd->frame_len - ((pwd->frame_len * 9) / 100)) >> k;
232                 /* high freq computation */
233                 pwd->high_band_start[k] = (int) ((block_len * 2 * high_freq)
234                         / ahi->sample_rate + 0.5);
235                 n = exponent_size;
236                 j = 0;
237                 pos = 0;
238                 for (i = 0; i < n; i++) {
239                         int start, end;
240                         start = pos;
241                         pos += pwd->exponent_bands[k][i];
242                         end = pos;
243                         if (start < pwd->high_band_start[k])
244                                 start = pwd->high_band_start[k];
245                         if (end > pwd->coefs_end[k])
246                                 end = pwd->coefs_end[k];
247                         if (end > start)
248                                 pwd->exponent_high_bands[k][j++] = end - start;
249                 }
250                 pwd->exponent_high_sizes[k] = j;
251         }
252 }
253
254 static int wma_init(struct private_wmadec_data *pwd)
255 {
256         int i;
257         float bps1, high_freq;
258         volatile float bps;
259         int sample_rate1;
260         int coef_vlc_table;
261         struct asf_header_info *ahi = &pwd->ahi;
262         int flags2 = ahi->flags2;
263
264         if (ahi->sample_rate <= 0 || ahi->sample_rate > 50000
265                 || ahi->channels <= 0 || ahi->channels > 8
266                 || ahi->bit_rate <= 0)
267                 return -E_WMA_BAD_PARAMS;
268
269         /* compute MDCT block size */
270         if (ahi->sample_rate <= 16000)
271                 pwd->frame_len_bits = 9;
272         else if (ahi->sample_rate <= 22050)
273                 pwd->frame_len_bits = 10;
274         else
275                 pwd->frame_len_bits = 11;
276         pwd->frame_len = 1 << pwd->frame_len_bits;
277         if (pwd->ahi.use_variable_block_len) {
278                 int nb_max, nb;
279                 nb = ((flags2 >> 3) & 3) + 1;
280                 if ((ahi->bit_rate / ahi->channels) >= 32000)
281                         nb += 2;
282                 nb_max = pwd->frame_len_bits - BLOCK_MIN_BITS;
283                 if (nb > nb_max)
284                         nb = nb_max;
285                 pwd->nb_block_sizes = nb + 1;
286         } else
287                 pwd->nb_block_sizes = 1;
288
289         /* init rate dependent parameters */
290         pwd->use_noise_coding = 1;
291         high_freq = ahi->sample_rate * 0.5;
292
293         /* wma2 rates are normalized */
294         sample_rate1 = ahi->sample_rate;
295         if (sample_rate1 >= 44100)
296                 sample_rate1 = 44100;
297         else if (sample_rate1 >= 22050)
298                 sample_rate1 = 22050;
299         else if (sample_rate1 >= 16000)
300                 sample_rate1 = 16000;
301         else if (sample_rate1 >= 11025)
302                 sample_rate1 = 11025;
303         else if (sample_rate1 >= 8000)
304                 sample_rate1 = 8000;
305
306         bps = (float) ahi->bit_rate / (float) (ahi->channels * ahi->sample_rate);
307         pwd->byte_offset_bits = wma_log2((int) (bps * pwd->frame_len / 8.0 + 0.5)) + 2;
308         /*
309          * Compute high frequency value and choose if noise coding should be
310          * activated.
311          */
312         bps1 = bps;
313         if (ahi->channels == 2)
314                 bps1 = bps * 1.6;
315         if (sample_rate1 == 44100) {
316                 if (bps1 >= 0.61)
317                         pwd->use_noise_coding = 0;
318                 else
319                         high_freq = high_freq * 0.4;
320         } else if (sample_rate1 == 22050) {
321                 if (bps1 >= 1.16)
322                         pwd->use_noise_coding = 0;
323                 else if (bps1 >= 0.72)
324                         high_freq = high_freq * 0.7;
325                 else
326                         high_freq = high_freq * 0.6;
327         } else if (sample_rate1 == 16000) {
328                 if (bps > 0.5)
329                         high_freq = high_freq * 0.5;
330                 else
331                         high_freq = high_freq * 0.3;
332         } else if (sample_rate1 == 11025)
333                 high_freq = high_freq * 0.7;
334         else if (sample_rate1 == 8000) {
335                 if (bps <= 0.625)
336                         high_freq = high_freq * 0.5;
337                 else if (bps > 0.75)
338                         pwd->use_noise_coding = 0;
339                 else
340                         high_freq = high_freq * 0.65;
341         } else {
342                 if (bps >= 0.8)
343                         high_freq = high_freq * 0.75;
344                 else if (bps >= 0.6)
345                         high_freq = high_freq * 0.6;
346                 else
347                         high_freq = high_freq * 0.5;
348         }
349         PARA_INFO_LOG("channels=%u sample_rate=%u "
350                 "bitrate=%u block_align=%d\n",
351                 ahi->channels, ahi->sample_rate,
352                 ahi->bit_rate, ahi->block_align);
353         PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
354                 "high_freq=%f bitoffset=%d\n",
355                 pwd->frame_len, bps, bps1,
356                 high_freq, pwd->byte_offset_bits);
357         PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
358                 pwd->use_noise_coding, pwd->ahi.use_exp_vlc, pwd->nb_block_sizes);
359
360         compute_scale_factor_band_sizes(pwd, high_freq);
361         /* init MDCT windows : simple sinus window */
362         for (i = 0; i < pwd->nb_block_sizes; i++) {
363                 int n;
364                 n = 1 << (pwd->frame_len_bits - i);
365                 sine_window_init(sine_windows[pwd->frame_len_bits - i - 7], n);
366                 pwd->windows[i] = sine_windows[pwd->frame_len_bits - i - 7];
367         }
368
369         pwd->reset_block_lengths = true;
370
371         if (pwd->use_noise_coding) {
372                 /* init the noise generator */
373                 if (pwd->ahi.use_exp_vlc)
374                         pwd->noise_mult = 0.02;
375                 else
376                         pwd->noise_mult = 0.04;
377
378                 {
379                         unsigned int seed;
380                         float norm;
381                         seed = 1;
382                         norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd->noise_mult;
383                         for (i = 0; i < NOISE_TAB_SIZE; i++) {
384                                 seed = seed * 314159 + 1;
385                                 pwd->noise_table[i] = (float) ((int) seed) * norm;
386                         }
387                 }
388         }
389
390         /* choose the VLC tables for the coefficients */
391         coef_vlc_table = 4;
392         if (ahi->sample_rate >= 32000) {
393                 if (bps1 < 0.72)
394                         coef_vlc_table = 0;
395                 else if (bps1 < 1.16)
396                         coef_vlc_table = 2;
397         }
398         init_coef_vlc(pwd, coef_vlc_table, 0);
399         init_coef_vlc(pwd, coef_vlc_table + 1, 1);
400         return 0;
401 }
402
403 static void wma_lsp_to_curve_init(struct private_wmadec_data *pwd)
404 {
405         float wdel, a, b;
406         int i, e, m;
407
408         wdel = M_PI / pwd->frame_len;
409         for (i = 0; i < pwd->frame_len; i++)
410                 pwd->lsp_cos_table[i] = 2.0f * cos(wdel * i);
411
412         /* tables for x^-0.25 computation */
413         for (i = 0; i < 256; i++) {
414                 e = i - 126;
415                 pwd->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
416         }
417
418         /* These two tables are needed to avoid two operations in pow_m1_4. */
419         b = 1.0;
420         for (i = (1 << LSP_POW_BITS) - 1; i >= 0; i--) {
421                 m = (1 << LSP_POW_BITS) + i;
422                 a = (float) m *(0.5 / (1 << LSP_POW_BITS));
423                 a = pow(a, -0.25);
424                 pwd->lsp_pow_m_table1[i] = 2 * a - b;
425                 pwd->lsp_pow_m_table2[i] = b - a;
426                 b = a;
427         }
428 }
429
430 static int wma_decode_init(char *initial_buf, int len, struct private_wmadec_data **result)
431 {
432         struct private_wmadec_data *pwd;
433         int ret, i;
434
435         PARA_NOTICE_LOG("initial buf: %d bytes\n", len);
436         pwd = para_calloc(sizeof(*pwd));
437         ret = read_asf_header(initial_buf, len, &pwd->ahi);
438         if (ret <= 0) {
439                 free(pwd);
440                 return ret;
441         }
442
443         ret = wma_init(pwd);
444         if (ret < 0)
445                 return ret;
446         /* init MDCT */
447         for (i = 0; i < pwd->nb_block_sizes; i++) {
448                 ret = imdct_init(pwd->frame_len_bits - i + 1, &pwd->mdct_ctx[i]);
449                 if (ret < 0)
450                         return ret;
451         }
452         if (pwd->use_noise_coding) {
453                 PARA_INFO_LOG("using noise coding\n");
454                 init_vlc(&pwd->hgain_vlc, HGAINVLCBITS,
455                         sizeof(wma_hgain_huffbits), wma_hgain_huffbits,
456                         wma_hgain_huffcodes, 2);
457         }
458
459         if (pwd->ahi.use_exp_vlc) {
460                 PARA_INFO_LOG("using exp_vlc\n");
461                 init_vlc(&pwd->exp_vlc, EXPVLCBITS, sizeof(wma_scale_huffbits),
462                         wma_scale_huffbits, wma_scale_huffcodes, 4);
463         } else {
464                 PARA_INFO_LOG("using curve\n");
465                 wma_lsp_to_curve_init(pwd);
466         }
467         *result = pwd;
468         return pwd->ahi.header_len;
469 }
470
471 /**
472  * compute x^-0.25 with an exponent and mantissa table. We use linear
473  * interpolation to reduce the mantissa table size at a small speed
474  * expense (linear interpolation approximately doubles the number of
475  * bits of precision).
476  */
477 static inline float pow_m1_4(struct private_wmadec_data *pwd, float x)
478 {
479         union {
480                 float f;
481                 unsigned int v;
482         } u, t;
483         unsigned int e, m;
484         float a, b;
485
486         u.f = x;
487         e = u.v >> 23;
488         m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
489         /* build interpolation scale: 1 <= t < 2. */
490         t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
491         a = pwd->lsp_pow_m_table1[m];
492         b = pwd->lsp_pow_m_table2[m];
493         return pwd->lsp_pow_e_table[e] * (a + b * t.f);
494 }
495
496 static void wma_lsp_to_curve(struct private_wmadec_data *pwd,
497                 float *out, float *val_max_ptr, int n, float *lsp)
498 {
499         int i, j;
500         float p, q, w, v, val_max;
501
502         val_max = 0;
503         for (i = 0; i < n; i++) {
504                 p = 0.5f;
505                 q = 0.5f;
506                 w = pwd->lsp_cos_table[i];
507                 for (j = 1; j < NB_LSP_COEFS; j += 2) {
508                         q *= w - lsp[j - 1];
509                         p *= w - lsp[j];
510                 }
511                 p *= p * (2.0f - w);
512                 q *= q * (2.0f + w);
513                 v = p + q;
514                 v = pow_m1_4(pwd, v);
515                 if (v > val_max)
516                         val_max = v;
517                 out[i] = v;
518         }
519         *val_max_ptr = val_max;
520 }
521
522 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
523 static void decode_exp_lsp(struct private_wmadec_data *pwd, int ch)
524 {
525         float lsp_coefs[NB_LSP_COEFS];
526         int val, i;
527
528         for (i = 0; i < NB_LSP_COEFS; i++) {
529                 if (i == 0 || i >= 8)
530                         val = get_bits(&pwd->gb, 3);
531                 else
532                         val = get_bits(&pwd->gb, 4);
533                 lsp_coefs[i] = wma_lsp_codebook[i][val];
534         }
535
536         wma_lsp_to_curve(pwd, pwd->exponents[ch], &pwd->max_exponent[ch],
537                 pwd->block_len, lsp_coefs);
538 }
539
540 /* Decode exponents coded with VLC codes. */
541 static int decode_exp_vlc(struct private_wmadec_data *pwd, int ch)
542 {
543         int last_exp, n, code;
544         const uint16_t *ptr, *band_ptr;
545         float v, *q, max_scale, *q_end;
546
547         band_ptr = pwd->exponent_bands[pwd->frame_len_bits - pwd->block_len_bits];
548         ptr = band_ptr;
549         q = pwd->exponents[ch];
550         q_end = q + pwd->block_len;
551         max_scale = 0;
552         last_exp = 36;
553
554         while (q < q_end) {
555                 code = get_vlc(&pwd->gb, &pwd->exp_vlc);
556                 if (code < 0)
557                         return code;
558                 /* NOTE: this offset is the same as MPEG4 AAC ! */
559                 last_exp += code - 60;
560                 /* XXX: use a table */
561                 v = pow(10, last_exp * (1.0 / 16.0));
562                 if (v > max_scale)
563                         max_scale = v;
564                 n = *ptr++;
565                 do {
566                         *q++ = v;
567                 } while (--n);
568         }
569         pwd->max_exponent[ch] = max_scale;
570         return 0;
571 }
572
573 /* compute src0 * src1 + src2 */
574 static inline void vector_mult_add(float *dst, const float *src0, const float *src1,
575                 const float *src2, int len)
576 {
577         int i;
578
579         for (i = 0; i < len; i++)
580                 dst[i] = src0[i] * src1[i] + src2[i];
581 }
582
583 static inline void vector_mult_reverse(float *dst, const float *src0,
584                 const float *src1, int len)
585 {
586         int i;
587
588         src1 += len - 1;
589         for (i = 0; i < len; i++)
590                 dst[i] = src0[i] * src1[-i];
591 }
592
593 /**
594  * Apply MDCT window and add into output.
595  *
596  * We ensure that when the windows overlap their squared sum
597  * is always 1 (MDCT reconstruction rule).
598  */
599 static void wma_window(struct private_wmadec_data *pwd, float *out)
600 {
601         float *in = pwd->output;
602         int block_len, bsize, n;
603
604         /* left part */
605         if (pwd->block_len_bits <= pwd->prev_block_len_bits) {
606                 block_len = pwd->block_len;
607                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
608                 vector_mult_add(out, in, pwd->windows[bsize], out, block_len);
609         } else {
610                 block_len = 1 << pwd->prev_block_len_bits;
611                 n = (pwd->block_len - block_len) / 2;
612                 bsize = pwd->frame_len_bits - pwd->prev_block_len_bits;
613                 vector_mult_add(out + n, in + n, pwd->windows[bsize], out + n,
614                         block_len);
615                 memcpy(out + n + block_len, in + n + block_len,
616                         n * sizeof(float));
617         }
618         out += pwd->block_len;
619         in += pwd->block_len;
620         /* right part */
621         if (pwd->block_len_bits <= pwd->next_block_len_bits) {
622                 block_len = pwd->block_len;
623                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
624                 vector_mult_reverse(out, in, pwd->windows[bsize], block_len);
625         } else {
626                 block_len = 1 << pwd->next_block_len_bits;
627                 n = (pwd->block_len - block_len) / 2;
628                 bsize = pwd->frame_len_bits - pwd->next_block_len_bits;
629                 memcpy(out, in, n * sizeof(float));
630                 vector_mult_reverse(out + n, in + n, pwd->windows[bsize],
631                         block_len);
632                 memset(out + n + block_len, 0, n * sizeof(float));
633         }
634 }
635
636 static int wma_total_gain_to_bits(int total_gain)
637 {
638         if (total_gain < 15)
639                 return 13;
640         else if (total_gain < 32)
641                 return 12;
642         else if (total_gain < 40)
643                 return 11;
644         else if (total_gain < 45)
645                 return 10;
646         else
647                 return 9;
648 }
649
650 static int compute_high_band_values(struct private_wmadec_data *pwd,
651                 int bsize, int nb_coefs[MAX_CHANNELS])
652 {
653         int ch;
654
655         if (!pwd->use_noise_coding)
656                 return 0;
657         for (ch = 0; ch < pwd->ahi.channels; ch++) {
658                 int i, m, a;
659                 if (!pwd->channel_coded[ch])
660                         continue;
661                 m = pwd->exponent_high_sizes[bsize];
662                 for (i = 0; i < m; i++) {
663                         a = get_bit(&pwd->gb);
664                         pwd->high_band_coded[ch][i] = a;
665                         if (!a)
666                                 continue;
667                         nb_coefs[ch] -= pwd->exponent_high_bands[bsize][i];
668                 }
669         }
670         for (ch = 0; ch < pwd->ahi.channels; ch++) {
671                 int i, n, val;
672                 if (!pwd->channel_coded[ch])
673                         continue;
674                 n = pwd->exponent_high_sizes[bsize];
675                 val = (int)0x80000000;
676                 for (i = 0; i < n; i++) {
677                         if (!pwd->high_band_coded[ch][i])
678                                 continue;
679                         if (val == (int)0x80000000)
680                                 val = get_bits(&pwd->gb, 7) - 19;
681                         else {
682                                 int code = get_vlc(&pwd->gb, &pwd->hgain_vlc);
683                                 if (code < 0)
684                                         return code;
685                                 val += code - 18;
686                         }
687                         pwd->high_band_values[ch][i] = val;
688                 }
689         }
690         return 1;
691 }
692
693 static void compute_mdct_coefficients(struct private_wmadec_data *pwd,
694                 int bsize, int total_gain, int nb_coefs[MAX_CHANNELS])
695 {
696         int ch;
697         float mdct_norm = 1.0 / (pwd->block_len / 2);
698
699         for (ch = 0; ch < pwd->ahi.channels; ch++) {
700                 int16_t *coefs1;
701                 float *coefs, *exponents, mult, mult1, noise;
702                 int i, j, n, n1, last_high_band, esize;
703                 float exp_power[HIGH_BAND_MAX_SIZE];
704
705                 if (!pwd->channel_coded[ch])
706                         continue;
707                 coefs1 = pwd->coefs1[ch];
708                 exponents = pwd->exponents[ch];
709                 esize = pwd->exponents_bsize[ch];
710                 mult = pow(10, total_gain * 0.05) / pwd->max_exponent[ch];
711                 mult *= mdct_norm;
712                 coefs = pwd->coefs[ch];
713                 if (!pwd->use_noise_coding) {
714                         /* XXX: optimize more */
715                         n = nb_coefs[ch];
716                         for (i = 0; i < n; i++)
717                                 *coefs++ = coefs1[i] *
718                                         exponents[i << bsize >> esize] * mult;
719                         n = pwd->block_len - pwd->coefs_end[bsize];
720                         for (i = 0; i < n; i++)
721                                 *coefs++ = 0.0;
722                         continue;
723                 }
724                 n1 = pwd->exponent_high_sizes[bsize];
725                 /* compute power of high bands */
726                 exponents = pwd->exponents[ch] +
727                         (pwd->high_band_start[bsize] << bsize);
728                 last_high_band = 0; /* avoid warning */
729                 for (j = 0; j < n1; j++) {
730                         n = pwd->exponent_high_bands[
731                                 pwd->frame_len_bits - pwd->block_len_bits][j];
732                         if (pwd->high_band_coded[ch][j]) {
733                                 float e2, val;
734                                 e2 = 0;
735                                 for (i = 0; i < n; i++) {
736                                         val = exponents[i << bsize >> esize];
737                                         e2 += val * val;
738                                 }
739                                 exp_power[j] = e2 / n;
740                                 last_high_band = j;
741                         }
742                         exponents += n << bsize;
743                 }
744                 /* main freqs and high freqs */
745                 exponents = pwd->exponents[ch];
746                 for (j = -1; j < n1; j++) {
747                         if (j < 0)
748                                 n = pwd->high_band_start[bsize];
749                         else
750                                 n = pwd->exponent_high_bands[pwd->frame_len_bits
751                                         - pwd->block_len_bits][j];
752                         if (j >= 0 && pwd->high_band_coded[ch][j]) {
753                                 /* use noise with specified power */
754                                 mult1 = sqrt(exp_power[j]
755                                         / exp_power[last_high_band]);
756                                 /* XXX: use a table */
757                                 mult1 *= pow(10, pwd->high_band_values[ch][j] * 0.05);
758                                 mult1 /= (pwd->max_exponent[ch] * pwd->noise_mult);
759                                 mult1 *= mdct_norm;
760                                 for (i = 0; i < n; i++) {
761                                         noise = pwd->noise_table[pwd->noise_index];
762                                         pwd->noise_index = (pwd->noise_index + 1)
763                                                 & (NOISE_TAB_SIZE - 1);
764                                         *coefs++ = noise * exponents[
765                                                 i << bsize >> esize] * mult1;
766                                 }
767                                 exponents += n << bsize;
768                         } else {
769                                 /* coded values + small noise */
770                                 for (i = 0; i < n; i++) {
771                                         noise = pwd->noise_table[pwd->noise_index];
772                                         pwd->noise_index = (pwd->noise_index + 1)
773                                                 & (NOISE_TAB_SIZE - 1);
774                                         *coefs++ = ((*coefs1++) + noise) *
775                                                 exponents[i << bsize >> esize]
776                                                 * mult;
777                                 }
778                                 exponents += n << bsize;
779                         }
780                 }
781                 /* very high freqs: noise */
782                 n = pwd->block_len - pwd->coefs_end[bsize];
783                 mult1 = mult * exponents[(-(1 << bsize)) >> esize];
784                 for (i = 0; i < n; i++) {
785                         *coefs++ = pwd->noise_table[pwd->noise_index] * mult1;
786                         pwd->noise_index = (pwd->noise_index + 1)
787                                 & (NOISE_TAB_SIZE - 1);
788                 }
789         }
790 }
791
792 /**
793  * Returns 0 if OK, 1 if last block of frame, negative on uncorrectable
794  * errors.
795  */
796 static int wma_decode_block(struct private_wmadec_data *pwd)
797 {
798         int ret, n, v, ch, code, bsize;
799         int coef_nb_bits, total_gain;
800         int nb_coefs[MAX_CHANNELS];
801
802         /* compute current block length */
803         if (pwd->ahi.use_variable_block_len) {
804                 n = wma_log2(pwd->nb_block_sizes - 1) + 1;
805
806                 if (pwd->reset_block_lengths) {
807                         pwd->reset_block_lengths = false;
808                         v = get_bits(&pwd->gb, n);
809                         if (v >= pwd->nb_block_sizes)
810                                 return -E_WMA_BLOCK_SIZE;
811                         pwd->prev_block_len_bits = pwd->frame_len_bits - v;
812                         v = get_bits(&pwd->gb, n);
813                         if (v >= pwd->nb_block_sizes)
814                                 return -E_WMA_BLOCK_SIZE;
815                         pwd->block_len_bits = pwd->frame_len_bits - v;
816                 } else {
817                         /* update block lengths */
818                         pwd->prev_block_len_bits = pwd->block_len_bits;
819                         pwd->block_len_bits = pwd->next_block_len_bits;
820                 }
821                 v = get_bits(&pwd->gb, n);
822                 if (v >= pwd->nb_block_sizes)
823                         return -E_WMA_BLOCK_SIZE;
824                 pwd->next_block_len_bits = pwd->frame_len_bits - v;
825         } else {
826                 /* fixed block len */
827                 pwd->next_block_len_bits = pwd->frame_len_bits;
828                 pwd->prev_block_len_bits = pwd->frame_len_bits;
829                 pwd->block_len_bits = pwd->frame_len_bits;
830         }
831
832         /* now check if the block length is coherent with the frame length */
833         pwd->block_len = 1 << pwd->block_len_bits;
834         if ((pwd->block_pos + pwd->block_len) > pwd->frame_len)
835                 return -E_INCOHERENT_BLOCK_LEN;
836
837         if (pwd->ahi.channels == 2)
838                 pwd->ms_stereo = get_bit(&pwd->gb);
839         v = 0;
840         for (ch = 0; ch < pwd->ahi.channels; ch++) {
841                 int a = get_bit(&pwd->gb);
842                 pwd->channel_coded[ch] = a;
843                 v |= a;
844         }
845
846         bsize = pwd->frame_len_bits - pwd->block_len_bits;
847
848         /* if no channel coded, no need to go further */
849         /* XXX: fix potential framing problems */
850         if (!v)
851                 goto next;
852
853         /*
854          * Read total gain and extract corresponding number of bits for coef
855          * escape coding.
856          */
857         total_gain = 1;
858         for (;;) {
859                 int a = get_bits(&pwd->gb, 7);
860                 total_gain += a;
861                 if (a != 127)
862                         break;
863         }
864
865         coef_nb_bits = wma_total_gain_to_bits(total_gain);
866
867         /* compute number of coefficients */
868         n = pwd->coefs_end[bsize];
869         for (ch = 0; ch < pwd->ahi.channels; ch++)
870                 nb_coefs[ch] = n;
871
872         ret = compute_high_band_values(pwd, bsize, nb_coefs);
873         if (ret < 0)
874                 return ret;
875
876         /* exponents can be reused in short blocks. */
877         if ((pwd->block_len_bits == pwd->frame_len_bits) || get_bit(&pwd->gb)) {
878                 for (ch = 0; ch < pwd->ahi.channels; ch++) {
879                         if (pwd->channel_coded[ch]) {
880                                 if (pwd->ahi.use_exp_vlc) {
881                                         ret = decode_exp_vlc(pwd, ch);
882                                         if (ret < 0)
883                                                 return ret;
884                                 } else
885                                         decode_exp_lsp(pwd, ch);
886                                 pwd->exponents_bsize[ch] = bsize;
887                         }
888                 }
889         }
890
891         /* parse spectral coefficients : just RLE encoding */
892         for (ch = 0; ch < pwd->ahi.channels; ch++) {
893                 struct vlc *coef_vlc;
894                 int level, run, tindex;
895                 int16_t *ptr, *eptr;
896                 const uint16_t *level_table, *run_table;
897
898                 if (!pwd->channel_coded[ch])
899                         continue;
900                 /*
901                  * special VLC tables are used for ms stereo because there is
902                  * potentially less energy there
903                  */
904                 tindex = (ch == 1 && pwd->ms_stereo);
905                 coef_vlc = &pwd->coef_vlc[tindex];
906                 run_table = pwd->run_table[tindex];
907                 level_table = pwd->level_table[tindex];
908                 /* XXX: optimize */
909                 ptr = &pwd->coefs1[ch][0];
910                 eptr = ptr + nb_coefs[ch];
911                 memset(ptr, 0, pwd->block_len * sizeof(int16_t));
912                 for (;;) {
913                         code = get_vlc(&pwd->gb, coef_vlc);
914                         if (code < 0)
915                                 return code;
916                         if (code == 1) /* EOB */
917                                 break;
918                         if (code == 0) { /* escape */
919                                 level = get_bits(&pwd->gb, coef_nb_bits);
920                                 /* reading block_len_bits would be better */
921                                 run = get_bits(&pwd->gb, pwd->frame_len_bits);
922                         } else { /* normal code */
923                                 run = run_table[code];
924                                 level = level_table[code];
925                         }
926                         if (!get_bit(&pwd->gb))
927                                 level = -level;
928                         ptr += run;
929                         if (ptr >= eptr) {
930                                 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
931                                 break;
932                         }
933                         *ptr++ = level;
934                         if (ptr >= eptr) /* EOB can be omitted */
935                                 break;
936                 }
937         }
938         compute_mdct_coefficients(pwd, bsize, total_gain, nb_coefs);
939         if (pwd->ms_stereo && pwd->channel_coded[1]) {
940                 float a, b;
941                 int i;
942                 /*
943                  * Nominal case for ms stereo: we do it before mdct.
944                  *
945                  * No need to optimize this case because it should almost never
946                  * happen.
947                  */
948                 if (!pwd->channel_coded[0]) {
949                         PARA_NOTICE_LOG("rare ms-stereo\n");
950                         memset(pwd->coefs[0], 0, sizeof(float) * pwd->block_len);
951                         pwd->channel_coded[0] = 1;
952                 }
953                 for (i = 0; i < pwd->block_len; i++) {
954                         a = pwd->coefs[0][i];
955                         b = pwd->coefs[1][i];
956                         pwd->coefs[0][i] = a + b;
957                         pwd->coefs[1][i] = a - b;
958                 }
959         }
960 next:
961         for (ch = 0; ch < pwd->ahi.channels; ch++) {
962                 int n4, idx;
963
964                 n4 = pwd->block_len / 2;
965                 if (pwd->channel_coded[ch])
966                         imdct(pwd->mdct_ctx[bsize], pwd->output, pwd->coefs[ch]);
967                 else if (!(pwd->ms_stereo && ch == 1))
968                         memset(pwd->output, 0, sizeof(pwd->output));
969
970                 /* multiply by the window and add in the frame */
971                 idx = (pwd->frame_len / 2) + pwd->block_pos - n4;
972                 wma_window(pwd, &pwd->frame_out[ch][idx]);
973         }
974
975         /* update block number */
976         pwd->block_pos += pwd->block_len;
977         if (pwd->block_pos >= pwd->frame_len)
978                 return 1;
979         else
980                 return 0;
981 }
982
983 /*
984  * Clip a signed integer value into the -32768,32767 range.
985  *
986  * \param a The value to clip.
987  *
988  * \return The clipped value.
989  */
990 static inline int16_t av_clip_int16(int a)
991 {
992         if ((a + 32768) & ~65535)
993                 return (a >> 31) ^ 32767;
994         else
995                 return a;
996 }
997
998 /* Decode a frame of frame_len samples. */
999 static int wma_decode_frame(struct private_wmadec_data *pwd, int16_t *samples)
1000 {
1001         int ret, i, ch;
1002         int16_t *ptr;
1003         float *iptr;
1004
1005         /* read each block */
1006         pwd->block_pos = 0;
1007         for (;;) {
1008                 ret = wma_decode_block(pwd);
1009                 if (ret < 0)
1010                         return ret;
1011                 if (ret)
1012                         break;
1013         }
1014
1015         /* convert frame to integer */
1016         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1017                 ptr = samples + ch;
1018                 iptr = pwd->frame_out[ch];
1019
1020                 for (i = 0; i < pwd->frame_len; i++) {
1021                         *ptr = av_clip_int16(lrintf(*iptr++));
1022                         ptr += pwd->ahi.channels;
1023                 }
1024                 /* prepare for next block */
1025                 memmove(&pwd->frame_out[ch][0], &pwd->frame_out[ch][pwd->frame_len],
1026                         pwd->frame_len * sizeof(float));
1027         }
1028         return 0;
1029 }
1030
1031 static int wma_decode_superframe(struct private_wmadec_data *pwd, void *out,
1032                 int *out_size, const uint8_t *in)
1033 {
1034         int ret, in_size = pwd->ahi.packet_size - WMA_FRAME_SKIP;
1035         int16_t *samples = out;
1036
1037         init_get_bits(&pwd->gb, in, in_size);
1038         if (pwd->ahi.use_bit_reservoir) {
1039                 int i, nb_frames, bit_offset, pos, len;
1040                 uint8_t *q;
1041
1042                 /* read super frame header */
1043                 skip_bits(&pwd->gb, 4); /* super frame index */
1044                 nb_frames = get_bits(&pwd->gb, 4) - 1;
1045                 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1046                 ret = -E_WMA_OUTPUT_SPACE;
1047                 if ((nb_frames + 1) * pwd->ahi.channels * pwd->frame_len
1048                                 * sizeof(int16_t) > *out_size)
1049                         goto fail;
1050
1051                 bit_offset = get_bits(&pwd->gb, pwd->byte_offset_bits + 3);
1052
1053                 if (pwd->last_superframe_len > 0) {
1054                         /* add bit_offset bits to last frame */
1055                         ret = -E_WMA_BAD_SUPERFRAME;
1056                         if ((pwd->last_superframe_len + ((bit_offset + 7) >> 3)) >
1057                                         MAX_CODED_SUPERFRAME_SIZE)
1058                                 goto fail;
1059                         q = pwd->last_superframe + pwd->last_superframe_len;
1060                         len = bit_offset;
1061                         while (len > 7) {
1062                                 *q++ = get_bits(&pwd->gb, 8);
1063                                 len -= 8;
1064                         }
1065                         if (len > 0)
1066                                 *q++ = get_bits(&pwd->gb, len) << (8 - len);
1067
1068                         /* XXX: bit_offset bits into last frame */
1069                         init_get_bits(&pwd->gb, pwd->last_superframe,
1070                                 MAX_CODED_SUPERFRAME_SIZE);
1071                         /* skip unused bits */
1072                         if (pwd->last_bitoffset > 0)
1073                                 skip_bits(&pwd->gb, pwd->last_bitoffset);
1074                         /*
1075                          * This frame is stored in the last superframe and in
1076                          * the current one.
1077                          */
1078                         ret = wma_decode_frame(pwd, samples);
1079                         if (ret < 0)
1080                                 goto fail;
1081                         samples += pwd->ahi.channels * pwd->frame_len;
1082                 }
1083
1084                 /* read each frame starting from bit_offset */
1085                 pos = bit_offset + 4 + 4 + pwd->byte_offset_bits + 3;
1086                 init_get_bits(&pwd->gb, in + (pos >> 3),
1087                         (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3)));
1088                 len = pos & 7;
1089                 if (len > 0)
1090                         skip_bits(&pwd->gb, len);
1091
1092                 pwd->reset_block_lengths = true;
1093                 for (i = 0; i < nb_frames; i++) {
1094                         ret = wma_decode_frame(pwd, samples);
1095                         if (ret < 0)
1096                                 goto fail;
1097                         samples += pwd->ahi.channels * pwd->frame_len;
1098                 }
1099
1100                 /* we copy the end of the frame in the last frame buffer */
1101                 pos = get_bits_count(&pwd->gb) +
1102                         ((bit_offset + 4 + 4 + pwd->byte_offset_bits + 3) & ~7);
1103                 pwd->last_bitoffset = pos & 7;
1104                 pos >>= 3;
1105                 len = in_size - pos;
1106                 ret = -E_WMA_BAD_SUPERFRAME;
1107                 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0)
1108                         goto fail;
1109                 pwd->last_superframe_len = len;
1110                 memcpy(pwd->last_superframe, in + pos, len);
1111         } else {
1112                 PARA_DEBUG_LOG("not using bit reservoir\n");
1113                 ret = -E_WMA_OUTPUT_SPACE;
1114                 if (pwd->ahi.channels * pwd->frame_len * sizeof(int16_t) > *out_size)
1115                         goto fail;
1116                 /* single frame decode */
1117                 ret = wma_decode_frame(pwd, samples);
1118                 if (ret < 0)
1119                         goto fail;
1120                 samples += pwd->ahi.channels * pwd->frame_len;
1121         }
1122         PARA_DEBUG_LOG("frame_len: %d, block_len: %d, outbytes: %d, eaten: %d\n",
1123                 pwd->frame_len, pwd->block_len,
1124                 (int)((int8_t *)samples - (int8_t *)out), pwd->ahi.block_align);
1125         *out_size = (int8_t *)samples - (int8_t *)out;
1126         return pwd->ahi.block_align;
1127 fail:
1128         /* reset the bit reservoir on errors */
1129         pwd->last_superframe_len = 0;
1130         return ret;
1131 }
1132
1133 static void wmadec_close(struct filter_node *fn)
1134 {
1135         struct private_wmadec_data *pwd = fn->private_data;
1136         int i;
1137
1138         if (!pwd)
1139                 return;
1140         for (i = 0; i < pwd->nb_block_sizes; i++)
1141                 imdct_end(pwd->mdct_ctx[i]);
1142         if (pwd->ahi.use_exp_vlc)
1143                 free_vlc(&pwd->exp_vlc);
1144         if (pwd->use_noise_coding)
1145                 free_vlc(&pwd->hgain_vlc);
1146         for (i = 0; i < 2; i++) {
1147                 free_vlc(&pwd->coef_vlc[i]);
1148                 free(pwd->run_table[i]);
1149                 free(pwd->level_table[i]);
1150         }
1151         free(fn->private_data);
1152         fn->private_data = NULL;
1153 }
1154
1155 static int wmadec_execute(struct btr_node *btrn, const char *cmd, char **result)
1156 {
1157         struct filter_node *fn = btr_context(btrn);
1158         struct private_wmadec_data *pwd = fn->private_data;
1159
1160         return decoder_execute(cmd, pwd->ahi.sample_rate, pwd->ahi.channels,
1161                 result);
1162 }
1163
1164 #define WMA_OUTPUT_BUFFER_SIZE (128 * 1024)
1165
1166 static int wmadec_post_select(__a_unused struct sched *s, void *context)
1167 {
1168         struct filter_node *fn = context;
1169         int ret, converted, out_size;
1170         struct private_wmadec_data *pwd = fn->private_data;
1171         struct btr_node *btrn = fn->btrn;
1172         size_t len;
1173         char *in, *out;
1174
1175 next_buffer:
1176         converted = 0;
1177         ret = btr_node_status(btrn, fn->min_iqs, BTR_NT_INTERNAL);
1178         if (ret < 0)
1179                 goto err;
1180         if (ret == 0)
1181                 return 0;
1182         btr_merge(btrn, fn->min_iqs);
1183         len = btr_next_buffer(btrn, &in);
1184         ret = -E_WMADEC_EOF;
1185         if (len < fn->min_iqs)
1186                 goto err;
1187         if (!pwd) {
1188                 ret = wma_decode_init(in, len, &pwd);
1189                 if (ret < 0)
1190                         goto err;
1191                 if (ret == 0) {
1192                         fn->min_iqs += 4096;
1193                         goto next_buffer;
1194                 }
1195                 fn->min_iqs = 2 * pwd->ahi.packet_size;
1196                 fn->private_data = pwd;
1197                 converted = pwd->ahi.header_len;
1198                 goto success;
1199         }
1200         fn->min_iqs = pwd->ahi.packet_size;
1201         if (fn->min_iqs > len)
1202                 goto success;
1203         out_size = WMA_OUTPUT_BUFFER_SIZE;
1204         out = para_malloc(out_size);
1205         ret = wma_decode_superframe(pwd, out, &out_size,
1206                 (uint8_t *)in + WMA_FRAME_SKIP);
1207         if (ret < 0) {
1208                 free(out);
1209                 goto err;
1210         }
1211         if (out_size > 0) {
1212                 out = para_realloc(out, out_size);
1213                 btr_add_output(out, out_size, btrn);
1214         } else
1215                 free(out);
1216         converted += pwd->ahi.packet_size;
1217 success:
1218         btr_consume(btrn, converted);
1219         return 0;
1220 err:
1221         assert(ret < 0);
1222         btr_remove_node(&fn->btrn);
1223         return ret;
1224 }
1225
1226 static void wmadec_open(struct filter_node *fn)
1227 {
1228         fn->private_data = NULL;
1229         fn->min_iqs = 4096;
1230 }
1231
1232 const struct filter lsg_filter_cmd_com_wmadec_user_data = {
1233         .open = wmadec_open,
1234         .close = wmadec_close,
1235         .execute = wmadec_execute,
1236         .pre_select = generic_filter_pre_select,
1237         .post_select = wmadec_post_select,
1238 };