]> git.tuebingen.mpg.de Git - paraslash.git/blob - wmadec_filter.c
baff2a5f4ef48b88d85a3f16c720c61141a25e28
[paraslash.git] / wmadec_filter.c
1 /*
2  * WMA compatible decoder
3  *
4  * Extracted 2009 from the mplayer source code 2009-02-10.
5  *
6  * Copyright (c) 2002 The FFmpeg Project
7  *
8  * Licensed under the GNU Lesser General Public License.
9  * For licencing details see COPYING.LIB.
10  */
11
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
13
14 /*
15  * This decoder handles Microsoft Windows Media Audio data version 2.
16  */
17
18 #define _XOPEN_SOURCE 600
19
20 #include <sys/time.h>
21 #include <inttypes.h>
22 #include <stdio.h>
23 #include <stdlib.h>
24 #include <math.h>
25 #include <string.h>
26 #include <regex.h>
27 #include <sys/select.h>
28
29 #include "para.h"
30 #include "error.h"
31 #include "list.h"
32 #include "ggo.h"
33 #include "string.h"
34 #include "sched.h"
35 #include "buffer_tree.h"
36 #include "filter.h"
37 #include "bitstream.h"
38 #include "imdct.h"
39 #include "wma.h"
40 #include "wmadata.h"
41
42
43 /* size of blocks */
44 #define BLOCK_MIN_BITS 7
45 #define BLOCK_MAX_BITS 11
46 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
47
48 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
49
50 /* XXX: find exact max size */
51 #define HIGH_BAND_MAX_SIZE 16
52
53 /* XXX: is it a suitable value ? */
54 #define MAX_CODED_SUPERFRAME_SIZE 16384
55
56 #define MAX_CHANNELS 2
57
58 #define NOISE_TAB_SIZE 8192
59
60 #define LSP_POW_BITS 7
61
62 struct private_wmadec_data {
63         /** Information contained in the audio file header. */
64         struct asf_header_info ahi;
65         struct getbit_context gb;
66         /** Whether to use the bit reservoir. */
67         int use_bit_reservoir;
68         /** Whether to use variable block length. */
69         int use_variable_block_len;
70         /** Whether to use exponent coding. */
71         int use_exp_vlc;
72         /** Whether perceptual noise is added. */
73         int use_noise_coding;
74         /** Depends on number of the bits per second and the frame length. */
75         int byte_offset_bits;
76         /** Only used if use_exp_vlc is true. */
77         struct vlc exp_vlc;
78         int exponent_sizes[BLOCK_NB_SIZES];
79         uint16_t exponent_bands[BLOCK_NB_SIZES][25];
80         /** The index of the first coef in high band. */
81         int high_band_start[BLOCK_NB_SIZES];
82         /** Maximal number of coded coefficients. */
83         int coefs_end[BLOCK_NB_SIZES];
84         int exponent_high_sizes[BLOCK_NB_SIZES];
85         int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
86         struct vlc hgain_vlc;
87
88         /* coded values in high bands */
89         int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
90         int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
91
92         /* there are two possible tables for spectral coefficients */
93         struct vlc coef_vlc[2];
94         uint16_t *run_table[2];
95         uint16_t *level_table[2];
96         const struct coef_vlc_table *coef_vlcs[2];
97         /** Frame length in samples. */
98         int frame_len;
99         /** log2 of frame_len. */
100         int frame_len_bits;
101         /** Number of block sizes. */
102         int nb_block_sizes;
103         /* block info */
104         int reset_block_lengths;
105         /** log2 of current block length. */
106         int block_len_bits;
107         /** log2 of next block length. */
108         int next_block_len_bits;
109         /** log2 of previous block length. */
110         int prev_block_len_bits;
111         /** Block length in samples. */
112         int block_len;
113         /** Current position in frame. */
114         int block_pos;
115         /** True if mid/side stereo mode. */
116         uint8_t ms_stereo;
117         /** True if channel is coded. */
118         uint8_t channel_coded[MAX_CHANNELS];
119         /** log2 ratio frame/exp. length. */
120         int exponents_bsize[MAX_CHANNELS];
121
122         float exponents[MAX_CHANNELS][BLOCK_MAX_SIZE];
123         float max_exponent[MAX_CHANNELS];
124         int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
125         float coefs[MAX_CHANNELS][BLOCK_MAX_SIZE];
126         float output[BLOCK_MAX_SIZE * 2];
127         struct mdct_context *mdct_ctx[BLOCK_NB_SIZES];
128         float *windows[BLOCK_NB_SIZES];
129         /** Output buffer for one frame and the last for IMDCT windowing. */
130         float frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2];
131         /** Last frame info. */
132         uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
133         int last_bitoffset;
134         int last_superframe_len;
135         float noise_table[NOISE_TAB_SIZE];
136         int noise_index;
137         float noise_mult;       /* XXX: suppress that and integrate it in the noise array */
138         /* lsp_to_curve tables */
139         float lsp_cos_table[BLOCK_MAX_SIZE];
140         float lsp_pow_e_table[256];
141         float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
142         float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
143 };
144
145 #define EXPVLCBITS 8
146 #define EXPMAX DIV_ROUND_UP(19, EXPVLCBITS)
147
148 #define HGAINVLCBITS 9
149 #define HGAINMAX DIV_ROUND_UP(13, HGAINVLCBITS)
150
151 #define VLCBITS 9
152 #define VLCMAX DIV_ROUND_UP(22, VLCBITS)
153
154 #define SINE_WINDOW(x) static float sine_ ## x[x] __a_aligned(16)
155
156 SINE_WINDOW(128);
157 SINE_WINDOW(256);
158 SINE_WINDOW(512);
159 SINE_WINDOW(1024);
160 SINE_WINDOW(2048);
161 SINE_WINDOW(4096);
162
163 static float *sine_windows[6] = {
164         sine_128, sine_256, sine_512, sine_1024, sine_2048, sine_4096
165 };
166
167 /* Generate a sine window. */
168 static void sine_window_init(float *window, int n)
169 {
170         int i;
171
172         for (i = 0; i < n; i++)
173                 window[i] = sinf((i + 0.5) * (M_PI / (2.0 * n)));
174 }
175
176 static void wmadec_cleanup(struct private_wmadec_data *pwd)
177 {
178         int i;
179
180         for (i = 0; i < pwd->nb_block_sizes; i++)
181                 imdct_end(pwd->mdct_ctx[i]);
182         if (pwd->use_exp_vlc)
183                 free_vlc(&pwd->exp_vlc);
184         if (pwd->use_noise_coding)
185                 free_vlc(&pwd->hgain_vlc);
186         for (i = 0; i < 2; i++) {
187                 free_vlc(&pwd->coef_vlc[i]);
188                 free(pwd->run_table[i]);
189                 free(pwd->level_table[i]);
190         }
191 }
192
193 static void init_coef_vlc(struct vlc *vlc, uint16_t **prun_table,
194                 uint16_t **plevel_table, const struct coef_vlc_table *vlc_table)
195 {
196         int n = vlc_table->n;
197         const uint8_t *table_bits = vlc_table->huffbits;
198         const uint32_t *table_codes = vlc_table->huffcodes;
199         const uint16_t *levels_table = vlc_table->levels;
200         uint16_t *run_table, *level_table;
201         int i, l, j, k, level;
202
203         init_vlc(vlc, VLCBITS, n, table_bits, table_codes, 4);
204
205         run_table = para_malloc(n * sizeof(uint16_t));
206         level_table = para_malloc(n * sizeof(uint16_t));
207         i = 2;
208         level = 1;
209         k = 0;
210         while (i < n) {
211                 l = levels_table[k++];
212                 for (j = 0; j < l; j++) {
213                         run_table[i] = j;
214                         level_table[i] = level;
215                         i++;
216                 }
217                 level++;
218         }
219         *prun_table = run_table;
220         *plevel_table = level_table;
221 }
222
223 /* compute the scale factor band sizes for each MDCT block size */
224 static void compute_scale_factor_band_sizes(struct private_wmadec_data *pwd,
225         float high_freq)
226 {
227         struct asf_header_info *ahi = &pwd->ahi;
228         int a, b, pos, lpos, k, block_len, i, j, n;
229         const uint8_t *table;
230
231         for (k = 0; k < pwd->nb_block_sizes; k++) {
232                 block_len = pwd->frame_len >> k;
233
234                 table = NULL;
235                 a = pwd->frame_len_bits - BLOCK_MIN_BITS - k;
236                 if (a < 3) {
237                         if (ahi->sample_rate >= 44100)
238                                 table = exponent_band_44100[a];
239                         else if (ahi->sample_rate >= 32000)
240                                 table = exponent_band_32000[a];
241                         else if (ahi->sample_rate >= 22050)
242                                 table = exponent_band_22050[a];
243                 }
244                 if (table) {
245                         n = *table++;
246                         for (i = 0; i < n; i++)
247                                 pwd->exponent_bands[k][i] = table[i];
248                         pwd->exponent_sizes[k] = n;
249                 } else {
250                         j = 0;
251                         lpos = 0;
252                         for (i = 0; i < 25; i++) {
253                                 a = wma_critical_freqs[i];
254                                 b = ahi->sample_rate;
255                                 pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
256                                 pos <<= 2;
257                                 if (pos > block_len)
258                                         pos = block_len;
259                                 if (pos > lpos)
260                                         pwd->exponent_bands[k][j++] = pos - lpos;
261                                 if (pos >= block_len)
262                                         break;
263                                 lpos = pos;
264                         }
265                         pwd->exponent_sizes[k] = j;
266                 }
267
268                 /* max number of coefs */
269                 pwd->coefs_end[k] = (pwd->frame_len - ((pwd->frame_len * 9) / 100)) >> k;
270                 /* high freq computation */
271                 pwd->high_band_start[k] = (int) ((block_len * 2 * high_freq)
272                         / ahi->sample_rate + 0.5);
273                 n = pwd->exponent_sizes[k];
274                 j = 0;
275                 pos = 0;
276                 for (i = 0; i < n; i++) {
277                         int start, end;
278                         start = pos;
279                         pos += pwd->exponent_bands[k][i];
280                         end = pos;
281                         if (start < pwd->high_band_start[k])
282                                 start = pwd->high_band_start[k];
283                         if (end > pwd->coefs_end[k])
284                                 end = pwd->coefs_end[k];
285                         if (end > start)
286                                 pwd->exponent_high_bands[k][j++] = end - start;
287                 }
288                 pwd->exponent_high_sizes[k] = j;
289         }
290 }
291
292 static int wma_init(struct private_wmadec_data *pwd)
293 {
294         int i;
295         float bps1, high_freq;
296         volatile float bps;
297         int sample_rate1;
298         int coef_vlc_table;
299         struct asf_header_info *ahi = &pwd->ahi;
300         int flags2 = ahi->flags2;
301
302         if (ahi->sample_rate <= 0 || ahi->sample_rate > 50000
303                 || ahi->channels <= 0 || ahi->channels > 8
304                 || ahi->bit_rate <= 0)
305                 return -E_WMA_BAD_PARAMS;
306
307         /* compute MDCT block size */
308         if (ahi->sample_rate <= 16000)
309                 pwd->frame_len_bits = 9;
310         else if (ahi->sample_rate <= 22050)
311                 pwd->frame_len_bits = 10;
312         else
313                 pwd->frame_len_bits = 11;
314         pwd->frame_len = 1 << pwd->frame_len_bits;
315         if (pwd->use_variable_block_len) {
316                 int nb_max, nb;
317                 nb = ((flags2 >> 3) & 3) + 1;
318                 if ((ahi->bit_rate / ahi->channels) >= 32000)
319                         nb += 2;
320                 nb_max = pwd->frame_len_bits - BLOCK_MIN_BITS;
321                 if (nb > nb_max)
322                         nb = nb_max;
323                 pwd->nb_block_sizes = nb + 1;
324         } else
325                 pwd->nb_block_sizes = 1;
326
327         /* init rate dependent parameters */
328         pwd->use_noise_coding = 1;
329         high_freq = ahi->sample_rate * 0.5;
330
331         /* wma2 rates are normalized */
332         sample_rate1 = ahi->sample_rate;
333         if (sample_rate1 >= 44100)
334                 sample_rate1 = 44100;
335         else if (sample_rate1 >= 22050)
336                 sample_rate1 = 22050;
337         else if (sample_rate1 >= 16000)
338                 sample_rate1 = 16000;
339         else if (sample_rate1 >= 11025)
340                 sample_rate1 = 11025;
341         else if (sample_rate1 >= 8000)
342                 sample_rate1 = 8000;
343
344         bps = (float) ahi->bit_rate / (float) (ahi->channels * ahi->sample_rate);
345         pwd->byte_offset_bits = wma_log2((int) (bps * pwd->frame_len / 8.0 + 0.5)) + 2;
346         /*
347          * Compute high frequency value and choose if noise coding should be
348          * activated.
349          */
350         bps1 = bps;
351         if (ahi->channels == 2)
352                 bps1 = bps * 1.6;
353         if (sample_rate1 == 44100) {
354                 if (bps1 >= 0.61)
355                         pwd->use_noise_coding = 0;
356                 else
357                         high_freq = high_freq * 0.4;
358         } else if (sample_rate1 == 22050) {
359                 if (bps1 >= 1.16)
360                         pwd->use_noise_coding = 0;
361                 else if (bps1 >= 0.72)
362                         high_freq = high_freq * 0.7;
363                 else
364                         high_freq = high_freq * 0.6;
365         } else if (sample_rate1 == 16000) {
366                 if (bps > 0.5)
367                         high_freq = high_freq * 0.5;
368                 else
369                         high_freq = high_freq * 0.3;
370         } else if (sample_rate1 == 11025)
371                 high_freq = high_freq * 0.7;
372         else if (sample_rate1 == 8000) {
373                 if (bps <= 0.625)
374                         high_freq = high_freq * 0.5;
375                 else if (bps > 0.75)
376                         pwd->use_noise_coding = 0;
377                 else
378                         high_freq = high_freq * 0.65;
379         } else {
380                 if (bps >= 0.8)
381                         high_freq = high_freq * 0.75;
382                 else if (bps >= 0.6)
383                         high_freq = high_freq * 0.6;
384                 else
385                         high_freq = high_freq * 0.5;
386         }
387         PARA_INFO_LOG("channels=%d sample_rate=%d "
388                 "bitrate=%d block_align=%d\n",
389                 ahi->channels, ahi->sample_rate,
390                 ahi->bit_rate, ahi->block_align);
391         PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
392                 "high_freq=%f bitoffset=%d\n",
393                 pwd->frame_len, bps, bps1,
394                 high_freq, pwd->byte_offset_bits);
395         PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
396                 pwd->use_noise_coding, pwd->use_exp_vlc, pwd->nb_block_sizes);
397
398         compute_scale_factor_band_sizes(pwd, high_freq);
399         /* init MDCT windows : simple sinus window */
400         for (i = 0; i < pwd->nb_block_sizes; i++) {
401                 int n;
402                 n = 1 << (pwd->frame_len_bits - i);
403                 sine_window_init(sine_windows[pwd->frame_len_bits - i - 7], n);
404                 pwd->windows[i] = sine_windows[pwd->frame_len_bits - i - 7];
405         }
406
407         pwd->reset_block_lengths = 1;
408
409         if (pwd->use_noise_coding) {
410                 /* init the noise generator */
411                 if (pwd->use_exp_vlc)
412                         pwd->noise_mult = 0.02;
413                 else
414                         pwd->noise_mult = 0.04;
415
416                 {
417                         unsigned int seed;
418                         float norm;
419                         seed = 1;
420                         norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd->noise_mult;
421                         for (i = 0; i < NOISE_TAB_SIZE; i++) {
422                                 seed = seed * 314159 + 1;
423                                 pwd->noise_table[i] = (float) ((int) seed) * norm;
424                         }
425                 }
426         }
427
428         /* choose the VLC tables for the coefficients */
429         coef_vlc_table = 2;
430         if (ahi->sample_rate >= 32000) {
431                 if (bps1 < 0.72)
432                         coef_vlc_table = 0;
433                 else if (bps1 < 1.16)
434                         coef_vlc_table = 1;
435         }
436         pwd->coef_vlcs[0] = &coef_vlcs[coef_vlc_table * 2];
437         pwd->coef_vlcs[1] = &coef_vlcs[coef_vlc_table * 2 + 1];
438         init_coef_vlc(&pwd->coef_vlc[0], &pwd->run_table[0], &pwd->level_table[0],
439                 pwd->coef_vlcs[0]);
440         init_coef_vlc(&pwd->coef_vlc[1], &pwd->run_table[1], &pwd->level_table[1],
441                 pwd->coef_vlcs[1]);
442         return 0;
443 }
444
445 static void wma_lsp_to_curve_init(struct private_wmadec_data *pwd, int frame_len)
446 {
447         float wdel, a, b;
448         int i, e, m;
449
450         wdel = M_PI / frame_len;
451         for (i = 0; i < frame_len; i++)
452                 pwd->lsp_cos_table[i] = 2.0f * cos(wdel * i);
453
454         /* tables for x^-0.25 computation */
455         for (i = 0; i < 256; i++) {
456                 e = i - 126;
457                 pwd->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
458         }
459
460         /* These two tables are needed to avoid two operations in pow_m1_4. */
461         b = 1.0;
462         for (i = (1 << LSP_POW_BITS) - 1; i >= 0; i--) {
463                 m = (1 << LSP_POW_BITS) + i;
464                 a = (float) m *(0.5 / (1 << LSP_POW_BITS));
465                 a = pow(a, -0.25);
466                 pwd->lsp_pow_m_table1[i] = 2 * a - b;
467                 pwd->lsp_pow_m_table2[i] = b - a;
468                 b = a;
469         }
470 }
471
472 static int wma_decode_init(char *initial_buf, int len, struct private_wmadec_data **result)
473 {
474         struct private_wmadec_data *pwd;
475         int ret, i;
476
477         PARA_NOTICE_LOG("initial buf: %d bytes\n", len);
478         pwd = para_calloc(sizeof(*pwd));
479         ret = read_asf_header(initial_buf, len, &pwd->ahi);
480         if (ret <= 0) {
481                 free(pwd);
482                 return ret;
483         }
484
485         pwd->use_exp_vlc = pwd->ahi.flags2 & 0x0001;
486         pwd->use_bit_reservoir = pwd->ahi.flags2 & 0x0002;
487         pwd->use_variable_block_len = pwd->ahi.flags2 & 0x0004;
488
489         ret = wma_init(pwd);
490         if (ret < 0)
491                 return ret;
492         /* init MDCT */
493         for (i = 0; i < pwd->nb_block_sizes; i++) {
494                 ret = imdct_init(pwd->frame_len_bits - i + 1, &pwd->mdct_ctx[i]);
495                 if (ret < 0)
496                         return ret;
497         }
498         if (pwd->use_noise_coding) {
499                 PARA_INFO_LOG("using noise coding\n");
500                 init_vlc(&pwd->hgain_vlc, HGAINVLCBITS,
501                         sizeof(wma_hgain_huffbits), wma_hgain_huffbits,
502                         wma_hgain_huffcodes, 2);
503         }
504
505         if (pwd->use_exp_vlc) {
506                 PARA_INFO_LOG("using exp_vlc\n");
507                 init_vlc(&pwd->exp_vlc, EXPVLCBITS,
508                 sizeof(wma_scale_huffbits), wma_scale_huffbits,
509                 wma_scale_huffcodes, 4);
510         } else {
511                 PARA_INFO_LOG("using curve\n");
512                 wma_lsp_to_curve_init(pwd, pwd->frame_len);
513         }
514         *result = pwd;
515         return pwd->ahi.header_len;
516 }
517
518 /**
519  * compute x^-0.25 with an exponent and mantissa table. We use linear
520  * interpolation to reduce the mantissa table size at a small speed
521  * expense (linear interpolation approximately doubles the number of
522  * bits of precision).
523  */
524 static inline float pow_m1_4(struct private_wmadec_data *pwd, float x)
525 {
526         union {
527                 float f;
528                 unsigned int v;
529         } u, t;
530         unsigned int e, m;
531         float a, b;
532
533         u.f = x;
534         e = u.v >> 23;
535         m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
536         /* build interpolation scale: 1 <= t < 2. */
537         t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
538         a = pwd->lsp_pow_m_table1[m];
539         b = pwd->lsp_pow_m_table2[m];
540         return pwd->lsp_pow_e_table[e] * (a + b * t.f);
541 }
542
543 static void wma_lsp_to_curve(struct private_wmadec_data *pwd,
544                 float *out, float *val_max_ptr, int n, float *lsp)
545 {
546         int i, j;
547         float p, q, w, v, val_max;
548
549         val_max = 0;
550         for (i = 0; i < n; i++) {
551                 p = 0.5f;
552                 q = 0.5f;
553                 w = pwd->lsp_cos_table[i];
554                 for (j = 1; j < NB_LSP_COEFS; j += 2) {
555                         q *= w - lsp[j - 1];
556                         p *= w - lsp[j];
557                 }
558                 p *= p * (2.0f - w);
559                 q *= q * (2.0f + w);
560                 v = p + q;
561                 v = pow_m1_4(pwd, v);
562                 if (v > val_max)
563                         val_max = v;
564                 out[i] = v;
565         }
566         *val_max_ptr = val_max;
567 }
568
569 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
570 static void decode_exp_lsp(struct private_wmadec_data *pwd, int ch)
571 {
572         float lsp_coefs[NB_LSP_COEFS];
573         int val, i;
574
575         for (i = 0; i < NB_LSP_COEFS; i++) {
576                 if (i == 0 || i >= 8)
577                         val = get_bits(&pwd->gb, 3);
578                 else
579                         val = get_bits(&pwd->gb, 4);
580                 lsp_coefs[i] = wma_lsp_codebook[i][val];
581         }
582
583         wma_lsp_to_curve(pwd, pwd->exponents[ch], &pwd->max_exponent[ch],
584                 pwd->block_len, lsp_coefs);
585 }
586
587 /* Decode exponents coded with VLC codes. */
588 static int decode_exp_vlc(struct private_wmadec_data *pwd, int ch)
589 {
590         int last_exp, n, code;
591         const uint16_t *ptr, *band_ptr;
592         float v, *q, max_scale, *q_end;
593
594         band_ptr = pwd->exponent_bands[pwd->frame_len_bits - pwd->block_len_bits];
595         ptr = band_ptr;
596         q = pwd->exponents[ch];
597         q_end = q + pwd->block_len;
598         max_scale = 0;
599         last_exp = 36;
600
601         while (q < q_end) {
602                 code = get_vlc(&pwd->gb, pwd->exp_vlc.table, EXPVLCBITS, EXPMAX);
603                 if (code < 0)
604                         return code;
605                 /* NOTE: this offset is the same as MPEG4 AAC ! */
606                 last_exp += code - 60;
607                 /* XXX: use a table */
608                 v = pow(10, last_exp * (1.0 / 16.0));
609                 if (v > max_scale)
610                         max_scale = v;
611                 n = *ptr++;
612                 do {
613                         *q++ = v;
614                 } while (--n);
615         }
616         pwd->max_exponent[ch] = max_scale;
617         return 0;
618 }
619
620 /* compute src0 * src1 + src2 */
621 static inline void vector_mult_add(float *dst, const float *src0, const float *src1,
622                 const float *src2, int len)
623 {
624         int i;
625
626         for (i = 0; i < len; i++)
627                 dst[i] = src0[i] * src1[i] + src2[i];
628 }
629
630 static inline void vector_mult_reverse(float *dst, const float *src0,
631                 const float *src1, int len)
632 {
633         int i;
634
635         src1 += len - 1;
636         for (i = 0; i < len; i++)
637                 dst[i] = src0[i] * src1[-i];
638 }
639
640 /**
641  * Apply MDCT window and add into output.
642  *
643  * We ensure that when the windows overlap their squared sum
644  * is always 1 (MDCT reconstruction rule).
645  */
646 static void wma_window(struct private_wmadec_data *pwd, float *out)
647 {
648         float *in = pwd->output;
649         int block_len, bsize, n;
650
651         /* left part */
652         if (pwd->block_len_bits <= pwd->prev_block_len_bits) {
653                 block_len = pwd->block_len;
654                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
655                 vector_mult_add(out, in, pwd->windows[bsize], out, block_len);
656         } else {
657                 block_len = 1 << pwd->prev_block_len_bits;
658                 n = (pwd->block_len - block_len) / 2;
659                 bsize = pwd->frame_len_bits - pwd->prev_block_len_bits;
660                 vector_mult_add(out + n, in + n, pwd->windows[bsize], out + n,
661                         block_len);
662                 memcpy(out + n + block_len, in + n + block_len,
663                         n * sizeof(float));
664         }
665         out += pwd->block_len;
666         in += pwd->block_len;
667         /* right part */
668         if (pwd->block_len_bits <= pwd->next_block_len_bits) {
669                 block_len = pwd->block_len;
670                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
671                 vector_mult_reverse(out, in, pwd->windows[bsize], block_len);
672         } else {
673                 block_len = 1 << pwd->next_block_len_bits;
674                 n = (pwd->block_len - block_len) / 2;
675                 bsize = pwd->frame_len_bits - pwd->next_block_len_bits;
676                 memcpy(out, in, n * sizeof(float));
677                 vector_mult_reverse(out + n, in + n, pwd->windows[bsize],
678                         block_len);
679                 memset(out + n + block_len, 0, n * sizeof(float));
680         }
681 }
682
683 static int wma_total_gain_to_bits(int total_gain)
684 {
685         if (total_gain < 15)
686                 return 13;
687         else if (total_gain < 32)
688                 return 12;
689         else if (total_gain < 40)
690                 return 11;
691         else if (total_gain < 45)
692                 return 10;
693         else
694                 return 9;
695 }
696
697 static int compute_high_band_values(struct private_wmadec_data *pwd,
698                 int bsize, int nb_coefs[MAX_CHANNELS])
699 {
700         int ch;
701
702         if (!pwd->use_noise_coding)
703                 return 0;
704         for (ch = 0; ch < pwd->ahi.channels; ch++) {
705                 int i, m, a;
706                 if (!pwd->channel_coded[ch])
707                         continue;
708                 m = pwd->exponent_high_sizes[bsize];
709                 for (i = 0; i < m; i++) {
710                         a = get_bit(&pwd->gb);
711                         pwd->high_band_coded[ch][i] = a;
712                         if (!a)
713                                 continue;
714                         nb_coefs[ch] -= pwd->exponent_high_bands[bsize][i];
715                 }
716         }
717         for (ch = 0; ch < pwd->ahi.channels; ch++) {
718                 int i, n, val;
719                 if (!pwd->channel_coded[ch])
720                         continue;
721                 n = pwd->exponent_high_sizes[bsize];
722                 val = (int)0x80000000;
723                 for (i = 0; i < n; i++) {
724                         if (!pwd->high_band_coded[ch][i])
725                                 continue;
726                         if (val == (int)0x80000000)
727                                 val = get_bits(&pwd->gb, 7) - 19;
728                         else {
729                                 int code = get_vlc(&pwd->gb,
730                                         pwd->hgain_vlc.table, HGAINVLCBITS,
731                                         HGAINMAX);
732                                 if (code < 0)
733                                         return code;
734                                 val += code - 18;
735                         }
736                         pwd->high_band_values[ch][i] = val;
737                 }
738         }
739         return 1;
740 }
741
742 static void compute_mdct_coefficients(struct private_wmadec_data *pwd,
743                 int bsize, int total_gain, int nb_coefs[MAX_CHANNELS])
744 {
745         int ch;
746         float mdct_norm = 1.0 / (pwd->block_len / 2);
747
748         for (ch = 0; ch < pwd->ahi.channels; ch++) {
749                 int16_t *coefs1;
750                 float *coefs, *exponents, mult, mult1, noise;
751                 int i, j, n, n1, last_high_band, esize;
752                 float exp_power[HIGH_BAND_MAX_SIZE];
753
754                 if (!pwd->channel_coded[ch])
755                         continue;
756                 coefs1 = pwd->coefs1[ch];
757                 exponents = pwd->exponents[ch];
758                 esize = pwd->exponents_bsize[ch];
759                 mult = pow(10, total_gain * 0.05) / pwd->max_exponent[ch];
760                 mult *= mdct_norm;
761                 coefs = pwd->coefs[ch];
762                 if (!pwd->use_noise_coding) {
763                         /* XXX: optimize more */
764                         n = nb_coefs[ch];
765                         for (i = 0; i < n; i++)
766                                 *coefs++ = coefs1[i] *
767                                         exponents[i << bsize >> esize] * mult;
768                         n = pwd->block_len - pwd->coefs_end[bsize];
769                         for (i = 0; i < n; i++)
770                                 *coefs++ = 0.0;
771                         continue;
772                 }
773                 n1 = pwd->exponent_high_sizes[bsize];
774                 /* compute power of high bands */
775                 exponents = pwd->exponents[ch] +
776                         (pwd->high_band_start[bsize] << bsize);
777                 last_high_band = 0; /* avoid warning */
778                 for (j = 0; j < n1; j++) {
779                         n = pwd->exponent_high_bands[
780                                 pwd->frame_len_bits - pwd->block_len_bits][j];
781                         if (pwd->high_band_coded[ch][j]) {
782                                 float e2, val;
783                                 e2 = 0;
784                                 for (i = 0; i < n; i++) {
785                                         val = exponents[i << bsize >> esize];
786                                         e2 += val * val;
787                                 }
788                                 exp_power[j] = e2 / n;
789                                 last_high_band = j;
790                         }
791                         exponents += n << bsize;
792                 }
793                 /* main freqs and high freqs */
794                 exponents = pwd->exponents[ch];
795                 for (j = -1; j < n1; j++) {
796                         if (j < 0)
797                                 n = pwd->high_band_start[bsize];
798                         else
799                                 n = pwd->exponent_high_bands[pwd->frame_len_bits
800                                         - pwd->block_len_bits][j];
801                         if (j >= 0 && pwd->high_band_coded[ch][j]) {
802                                 /* use noise with specified power */
803                                 mult1 = sqrt(exp_power[j]
804                                         / exp_power[last_high_band]);
805                                 /* XXX: use a table */
806                                 mult1 *= pow(10, pwd->high_band_values[ch][j] * 0.05);
807                                 mult1 /= (pwd->max_exponent[ch] * pwd->noise_mult);
808                                 mult1 *= mdct_norm;
809                                 for (i = 0; i < n; i++) {
810                                         noise = pwd->noise_table[pwd->noise_index];
811                                         pwd->noise_index = (pwd->noise_index + 1)
812                                                 & (NOISE_TAB_SIZE - 1);
813                                         *coefs++ = noise * exponents[
814                                                 i << bsize >> esize] * mult1;
815                                 }
816                                 exponents += n << bsize;
817                         } else {
818                                 /* coded values + small noise */
819                                 for (i = 0; i < n; i++) {
820                                         noise = pwd->noise_table[pwd->noise_index];
821                                         pwd->noise_index = (pwd->noise_index + 1)
822                                                 & (NOISE_TAB_SIZE - 1);
823                                         *coefs++ = ((*coefs1++) + noise) *
824                                                 exponents[i << bsize >> esize]
825                                                 * mult;
826                                 }
827                                 exponents += n << bsize;
828                         }
829                 }
830                 /* very high freqs: noise */
831                 n = pwd->block_len - pwd->coefs_end[bsize];
832                 mult1 = mult * exponents[((-1 << bsize)) >> esize];
833                 for (i = 0; i < n; i++) {
834                         *coefs++ = pwd->noise_table[pwd->noise_index] * mult1;
835                         pwd->noise_index = (pwd->noise_index + 1)
836                                 & (NOISE_TAB_SIZE - 1);
837                 }
838         }
839 }
840
841 /**
842  * Returns 0 if OK, 1 if last block of frame, negative on uncorrectable
843  * errors.
844  */
845 static int wma_decode_block(struct private_wmadec_data *pwd)
846 {
847         int ret, n, v, ch, code, bsize;
848         int coef_nb_bits, total_gain;
849         int nb_coefs[MAX_CHANNELS];
850
851         /* compute current block length */
852         if (pwd->use_variable_block_len) {
853                 n = wma_log2(pwd->nb_block_sizes - 1) + 1;
854
855                 if (pwd->reset_block_lengths) {
856                         pwd->reset_block_lengths = 0;
857                         v = get_bits(&pwd->gb, n);
858                         if (v >= pwd->nb_block_sizes)
859                                 return -E_WMA_BLOCK_SIZE;
860                         pwd->prev_block_len_bits = pwd->frame_len_bits - v;
861                         v = get_bits(&pwd->gb, n);
862                         if (v >= pwd->nb_block_sizes)
863                                 return -E_WMA_BLOCK_SIZE;
864                         pwd->block_len_bits = pwd->frame_len_bits - v;
865                 } else {
866                         /* update block lengths */
867                         pwd->prev_block_len_bits = pwd->block_len_bits;
868                         pwd->block_len_bits = pwd->next_block_len_bits;
869                 }
870                 v = get_bits(&pwd->gb, n);
871                 if (v >= pwd->nb_block_sizes)
872                         return -E_WMA_BLOCK_SIZE;
873                 pwd->next_block_len_bits = pwd->frame_len_bits - v;
874         } else {
875                 /* fixed block len */
876                 pwd->next_block_len_bits = pwd->frame_len_bits;
877                 pwd->prev_block_len_bits = pwd->frame_len_bits;
878                 pwd->block_len_bits = pwd->frame_len_bits;
879         }
880
881         /* now check if the block length is coherent with the frame length */
882         pwd->block_len = 1 << pwd->block_len_bits;
883         if ((pwd->block_pos + pwd->block_len) > pwd->frame_len)
884                 return -E_INCOHERENT_BLOCK_LEN;
885
886         if (pwd->ahi.channels == 2)
887                 pwd->ms_stereo = get_bit(&pwd->gb);
888         v = 0;
889         for (ch = 0; ch < pwd->ahi.channels; ch++) {
890                 int a = get_bit(&pwd->gb);
891                 pwd->channel_coded[ch] = a;
892                 v |= a;
893         }
894
895         bsize = pwd->frame_len_bits - pwd->block_len_bits;
896
897         /* if no channel coded, no need to go further */
898         /* XXX: fix potential framing problems */
899         if (!v)
900                 goto next;
901
902         /*
903          * Read total gain and extract corresponding number of bits for coef
904          * escape coding.
905          */
906         total_gain = 1;
907         for (;;) {
908                 int a = get_bits(&pwd->gb, 7);
909                 total_gain += a;
910                 if (a != 127)
911                         break;
912         }
913
914         coef_nb_bits = wma_total_gain_to_bits(total_gain);
915
916         /* compute number of coefficients */
917         n = pwd->coefs_end[bsize];
918         for (ch = 0; ch < pwd->ahi.channels; ch++)
919                 nb_coefs[ch] = n;
920
921         ret = compute_high_band_values(pwd, bsize, nb_coefs);
922         if (ret < 0)
923                 return ret;
924
925         /* exponents can be reused in short blocks. */
926         if ((pwd->block_len_bits == pwd->frame_len_bits) || get_bit(&pwd->gb)) {
927                 for (ch = 0; ch < pwd->ahi.channels; ch++) {
928                         if (pwd->channel_coded[ch]) {
929                                 if (pwd->use_exp_vlc) {
930                                         ret = decode_exp_vlc(pwd, ch);
931                                         if (ret < 0)
932                                                 return ret;
933                                 } else
934                                         decode_exp_lsp(pwd, ch);
935                                 pwd->exponents_bsize[ch] = bsize;
936                         }
937                 }
938         }
939
940         /* parse spectral coefficients : just RLE encoding */
941         for (ch = 0; ch < pwd->ahi.channels; ch++) {
942                 struct vlc *coef_vlc;
943                 int level, run, tindex;
944                 int16_t *ptr, *eptr;
945                 const uint16_t *level_table, *run_table;
946
947                 if (!pwd->channel_coded[ch])
948                         continue;
949                 /*
950                  * special VLC tables are used for ms stereo because there is
951                  * potentially less energy there
952                  */
953                 tindex = (ch == 1 && pwd->ms_stereo);
954                 coef_vlc = &pwd->coef_vlc[tindex];
955                 run_table = pwd->run_table[tindex];
956                 level_table = pwd->level_table[tindex];
957                 /* XXX: optimize */
958                 ptr = &pwd->coefs1[ch][0];
959                 eptr = ptr + nb_coefs[ch];
960                 memset(ptr, 0, pwd->block_len * sizeof(int16_t));
961                 for (;;) {
962                         code = get_vlc(&pwd->gb, coef_vlc->table,
963                                 VLCBITS, VLCMAX);
964                         if (code < 0)
965                                 return code;
966                         if (code == 1) /* EOB */
967                                 break;
968                         if (code == 0) { /* escape */
969                                 level = get_bits(&pwd->gb, coef_nb_bits);
970                                 /* reading block_len_bits would be better */
971                                 run = get_bits(&pwd->gb, pwd->frame_len_bits);
972                         } else { /* normal code */
973                                 run = run_table[code];
974                                 level = level_table[code];
975                         }
976                         if (!get_bit(&pwd->gb))
977                                 level = -level;
978                         ptr += run;
979                         if (ptr >= eptr) {
980                                 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
981                                 break;
982                         }
983                         *ptr++ = level;
984                         if (ptr >= eptr) /* EOB can be omitted */
985                                 break;
986                 }
987         }
988         compute_mdct_coefficients(pwd, bsize, total_gain, nb_coefs);
989         if (pwd->ms_stereo && pwd->channel_coded[1]) {
990                 float a, b;
991                 int i;
992                 /*
993                  * Nominal case for ms stereo: we do it before mdct.
994                  *
995                  * No need to optimize this case because it should almost never
996                  * happen.
997                  */
998                 if (!pwd->channel_coded[0]) {
999                         PARA_NOTICE_LOG("rare ms-stereo\n");
1000                         memset(pwd->coefs[0], 0, sizeof(float) * pwd->block_len);
1001                         pwd->channel_coded[0] = 1;
1002                 }
1003                 for (i = 0; i < pwd->block_len; i++) {
1004                         a = pwd->coefs[0][i];
1005                         b = pwd->coefs[1][i];
1006                         pwd->coefs[0][i] = a + b;
1007                         pwd->coefs[1][i] = a - b;
1008                 }
1009         }
1010 next:
1011         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1012                 int n4, idx;
1013
1014                 n4 = pwd->block_len / 2;
1015                 if (pwd->channel_coded[ch])
1016                         imdct(pwd->mdct_ctx[bsize], pwd->output, pwd->coefs[ch]);
1017                 else if (!(pwd->ms_stereo && ch == 1))
1018                         memset(pwd->output, 0, sizeof(pwd->output));
1019
1020                 /* multiply by the window and add in the frame */
1021                 idx = (pwd->frame_len / 2) + pwd->block_pos - n4;
1022                 wma_window(pwd, &pwd->frame_out[ch][idx]);
1023         }
1024
1025         /* update block number */
1026         pwd->block_pos += pwd->block_len;
1027         if (pwd->block_pos >= pwd->frame_len)
1028                 return 1;
1029         else
1030                 return 0;
1031 }
1032
1033 /*
1034  * Clip a signed integer value into the -32768,32767 range.
1035  *
1036  * \param a The value to clip.
1037  *
1038  * \return The clipped value.
1039  */
1040 static inline int16_t av_clip_int16(int a)
1041 {
1042         if ((a + 32768) & ~65535)
1043                 return (a >> 31) ^ 32767;
1044         else
1045                 return a;
1046 }
1047
1048 /* Decode a frame of frame_len samples. */
1049 static int wma_decode_frame(struct private_wmadec_data *pwd, int16_t *samples)
1050 {
1051         int ret, i, n, ch, incr;
1052         int16_t *ptr;
1053         float *iptr;
1054
1055         /* read each block */
1056         pwd->block_pos = 0;
1057         for (;;) {
1058                 ret = wma_decode_block(pwd);
1059                 if (ret < 0)
1060                         return ret;
1061                 if (ret)
1062                         break;
1063         }
1064
1065         /* convert frame to integer */
1066         n = pwd->frame_len;
1067         incr = pwd->ahi.channels;
1068         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1069                 ptr = samples + ch;
1070                 iptr = pwd->frame_out[ch];
1071
1072                 for (i = 0; i < n; i++) {
1073                         *ptr = av_clip_int16(lrintf(*iptr++));
1074                         ptr += incr;
1075                 }
1076                 /* prepare for next block */
1077                 memmove(&pwd->frame_out[ch][0], &pwd->frame_out[ch][pwd->frame_len],
1078                         pwd->frame_len * sizeof(float));
1079         }
1080         return 0;
1081 }
1082
1083 static int wma_decode_superframe(struct private_wmadec_data *pwd, void *data,
1084                 int *data_size, const uint8_t *buf, int buf_size)
1085 {
1086         int ret;
1087         int16_t *samples;
1088
1089         if (buf_size == 0) {
1090                 pwd->last_superframe_len = 0;
1091                 return 0;
1092         }
1093         if (buf_size < pwd->ahi.block_align)
1094                 return 0;
1095         buf_size = pwd->ahi.block_align;
1096         samples = data;
1097         init_get_bits(&pwd->gb, buf, buf_size);
1098         if (pwd->use_bit_reservoir) {
1099                 int i, nb_frames, bit_offset, pos, len;
1100                 uint8_t *q;
1101
1102                 /* read super frame header */
1103                 skip_bits(&pwd->gb, 4); /* super frame index */
1104                 nb_frames = get_bits(&pwd->gb, 4) - 1;
1105                 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1106                 ret = -E_WMA_OUTPUT_SPACE;
1107                 if ((nb_frames + 1) * pwd->ahi.channels * pwd->frame_len
1108                                 * sizeof(int16_t) > *data_size)
1109                         goto fail;
1110
1111                 bit_offset = get_bits(&pwd->gb, pwd->byte_offset_bits + 3);
1112
1113                 if (pwd->last_superframe_len > 0) {
1114                         /* add bit_offset bits to last frame */
1115                         ret = -E_WMA_BAD_SUPERFRAME;
1116                         if ((pwd->last_superframe_len + ((bit_offset + 7) >> 3)) >
1117                                         MAX_CODED_SUPERFRAME_SIZE)
1118                                 goto fail;
1119                         q = pwd->last_superframe + pwd->last_superframe_len;
1120                         len = bit_offset;
1121                         while (len > 7) {
1122                                 *q++ = get_bits(&pwd->gb, 8);
1123                                 len -= 8;
1124                         }
1125                         if (len > 0)
1126                                 *q++ = get_bits(&pwd->gb, len) << (8 - len);
1127
1128                         /* XXX: bit_offset bits into last frame */
1129                         init_get_bits(&pwd->gb, pwd->last_superframe,
1130                                 MAX_CODED_SUPERFRAME_SIZE);
1131                         /* skip unused bits */
1132                         if (pwd->last_bitoffset > 0)
1133                                 skip_bits(&pwd->gb, pwd->last_bitoffset);
1134                         /*
1135                          * This frame is stored in the last superframe and in
1136                          * the current one.
1137                          */
1138                         ret = wma_decode_frame(pwd, samples);
1139                         if (ret < 0)
1140                                 goto fail;
1141                         samples += pwd->ahi.channels * pwd->frame_len;
1142                 }
1143
1144                 /* read each frame starting from bit_offset */
1145                 pos = bit_offset + 4 + 4 + pwd->byte_offset_bits + 3;
1146                 init_get_bits(&pwd->gb, buf + (pos >> 3),
1147                         (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3)));
1148                 len = pos & 7;
1149                 if (len > 0)
1150                         skip_bits(&pwd->gb, len);
1151
1152                 pwd->reset_block_lengths = 1;
1153                 for (i = 0; i < nb_frames; i++) {
1154                         ret = wma_decode_frame(pwd, samples);
1155                         if (ret < 0)
1156                                 goto fail;
1157                         samples += pwd->ahi.channels * pwd->frame_len;
1158                 }
1159
1160                 /* we copy the end of the frame in the last frame buffer */
1161                 pos = get_bits_count(&pwd->gb) +
1162                         ((bit_offset + 4 + 4 + pwd->byte_offset_bits + 3) & ~7);
1163                 pwd->last_bitoffset = pos & 7;
1164                 pos >>= 3;
1165                 len = buf_size - pos;
1166                 ret = -E_WMA_BAD_SUPERFRAME;
1167                 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0)
1168                         goto fail;
1169                 pwd->last_superframe_len = len;
1170                 memcpy(pwd->last_superframe, buf + pos, len);
1171         } else {
1172                 PARA_DEBUG_LOG("not using bit reservoir\n");
1173                 ret = -E_WMA_OUTPUT_SPACE;
1174                 if (pwd->ahi.channels * pwd->frame_len * sizeof(int16_t) > *data_size)
1175                         goto fail;
1176                 /* single frame decode */
1177                 ret = wma_decode_frame(pwd, samples);
1178                 if (ret < 0)
1179                         goto fail;
1180                 samples += pwd->ahi.channels * pwd->frame_len;
1181         }
1182         PARA_DEBUG_LOG("frame_len: %d, block_len: %d, outbytes: %d, eaten: %d\n",
1183                 pwd->frame_len, pwd->block_len,
1184                 (int)((int8_t *)samples - (int8_t *)data), pwd->ahi.block_align);
1185         *data_size = (int8_t *)samples - (int8_t *)data;
1186         return pwd->ahi.block_align;
1187 fail:
1188         /* reset the bit reservoir on errors */
1189         pwd->last_superframe_len = 0;
1190         return ret;
1191 }
1192
1193 static void wmadec_close(struct filter_node *fn)
1194 {
1195         struct private_wmadec_data *pwd = fn->private_data;
1196
1197         if (!pwd)
1198                 return;
1199         wmadec_cleanup(pwd);
1200         free(fn->private_data);
1201         fn->private_data = NULL;
1202 }
1203
1204 static int wmadec_execute(struct btr_node *btrn, const char *cmd, char **result)
1205 {
1206         struct filter_node *fn = btr_context(btrn);
1207         struct private_wmadec_data *pwd = fn->private_data;
1208
1209         return decoder_execute(cmd, pwd->ahi.sample_rate, pwd->ahi.channels,
1210                 result);
1211 }
1212
1213 #define WMA_OUTPUT_BUFFER_SIZE (128 * 1024)
1214
1215 static void wmadec_post_select(__a_unused struct sched *s, struct task *t)
1216 {
1217         struct filter_node *fn = container_of(t, struct filter_node, task);
1218         int ret, converted;
1219         struct private_wmadec_data *pwd = fn->private_data;
1220         struct btr_node *btrn = fn->btrn;
1221         size_t len;
1222         char *in;
1223
1224 next_buffer:
1225         converted = 0;
1226         t->error = 0;
1227         ret = btr_node_status(btrn, fn->min_iqs, BTR_NT_INTERNAL);
1228         if (ret < 0)
1229                 goto err;
1230         if (ret == 0)
1231                 return;
1232         btr_merge(btrn, fn->min_iqs);
1233         len = btr_next_buffer(btrn, (char **)&in);
1234         ret = -E_WMADEC_EOF;
1235         if (len < fn->min_iqs)
1236                 goto err;
1237         if (!pwd) {
1238                 ret = wma_decode_init(in, len, &pwd);
1239                 if (ret < 0)
1240                         goto err;
1241                 if (ret == 0) {
1242                         fn->min_iqs += 4096;
1243                         goto next_buffer;
1244                 }
1245                 fn->min_iqs = 2 * (WMA_FRAME_SKIP + pwd->ahi.block_align);
1246                 fn->private_data = pwd;
1247                 converted = pwd->ahi.header_len;
1248                 goto success;
1249         }
1250         fn->min_iqs = WMA_FRAME_SKIP + pwd->ahi.block_align;
1251         for (;;) {
1252                 char *out;
1253                 int out_size = WMA_OUTPUT_BUFFER_SIZE;
1254                 if (converted + fn->min_iqs > len)
1255                         break;
1256                 out = para_malloc(WMA_OUTPUT_BUFFER_SIZE);
1257                 ret = wma_decode_superframe(pwd, out,
1258                         &out_size, (uint8_t *)in + converted + WMA_FRAME_SKIP,
1259                         len - WMA_FRAME_SKIP);
1260                 if (ret < 0) {
1261                         free(out);
1262                         goto err;
1263                 }
1264                 btr_add_output(out, out_size, btrn);
1265                 converted += ret + WMA_FRAME_SKIP;
1266         }
1267 success:
1268         btr_consume(btrn, converted);
1269         return;
1270 err:
1271         assert(ret < 0);
1272         t->error = ret;
1273         btr_remove_node(btrn);
1274 }
1275
1276 static void wmadec_open(struct filter_node *fn)
1277 {
1278         fn->private_data = NULL;
1279         fn->min_iqs = 4096;
1280 }
1281
1282 /**
1283  * The init function of the wma decoder.
1284  *
1285  * \param f Its fields are filled in by the function.
1286  */
1287 void wmadec_filter_init(struct filter *f)
1288 {
1289         f->open = wmadec_open;
1290         f->close = wmadec_close;
1291         f->execute = wmadec_execute;
1292         f->pre_select = generic_filter_pre_select;
1293         f->post_select = wmadec_post_select;
1294 }