Merge branch 'refs/heads/t/ubsan'
[paraslash.git] / vss.c
1 /* Copyright (C) 1997 Andre Noll <maan@tuebingen.mpg.de>, see file COPYING. */
2
3 /** \file vss.c The virtual streaming system.
4 *
5 * This contains the audio streaming code of para_server which is independent
6 * of the current audio format, audio file selector and of the activated
7 * senders.
8 */
9
10 #include <sys/socket.h>
11 #include <netinet/in.h>
12 #include <regex.h>
13 #include <osl.h>
14 #include <sys/types.h>
15 #include <arpa/inet.h>
16 #include <sys/un.h>
17 #include <netdb.h>
18 #include <lopsub.h>
19
20 #include "server.lsg.h"
21 #include "para.h"
22 #include "error.h"
23 #include "portable_io.h"
24 #include "fec.h"
25 #include "string.h"
26 #include "afh.h"
27 #include "afs.h"
28 #include "net.h"
29 #include "server.h"
30 #include "list.h"
31 #include "send.h"
32 #include "sched.h"
33 #include "vss.h"
34 #include "ipc.h"
35 #include "fd.h"
36
37 extern struct misc_meta_data *mmd;
38 extern const struct sender udp_sender, dccp_sender, http_sender;
39 const struct sender * const senders[] = {
40 &http_sender, &dccp_sender, &udp_sender, NULL};
41
42 /** The possible states of the afs socket. */
43 enum afs_socket_status {
44 /** Socket is inactive. */
45 AFS_SOCKET_READY,
46 /** Socket fd was included in the write fd set for select(). */
47 AFS_SOCKET_CHECK_FOR_WRITE,
48 /** vss wrote a request to the socket and waits for reply from afs. */
49 AFS_SOCKET_AFD_PENDING
50 };
51
52 /** The task structure for the virtual streaming system. */
53 struct vss_task {
54 /** Copied from the -announce_time command line option. */
55 struct timeval announce_tv;
56 /** End of the announcing interval. */
57 struct timeval data_send_barrier;
58 /** End of the EOF interval. */
59 struct timeval eof_barrier;
60 /** Only used if --autoplay_delay was given. */
61 struct timeval autoplay_barrier;
62 /** Used for afs-server communication. */
63 int afs_socket;
64 /** The current state of \a afs_socket. */
65 enum afs_socket_status afsss;
66 /** The memory mapped audio file. */
67 char *map;
68 /** The size of the memory mapping. */
69 size_t mapsize;
70 /** Used by the scheduler. */
71 struct task *task;
72 /** Pointer to the header of the mapped audio file. */
73 char *header_buf;
74 /** Length of the audio file header. */
75 size_t header_len;
76 /** Time between audio file headers are sent. */
77 struct timeval header_interval;
78 /* Only used if afh supports dynamic chunks. */
79 void *afh_context;
80 };
81
82 /**
83 * The list of currently connected fec clients.
84 *
85 * Senders may use \ref vss_add_fec_client() to add entries to the list.
86 */
87 static struct list_head fec_client_list;
88
89 /**
90 * Data associated with one FEC group.
91 *
92 * A FEC group consists of a fixed number of slices and this number is given by
93 * the \a slices_per_group parameter of struct \ref fec_client_parms. Each FEC
94 * group contains a number of chunks of the current audio file.
95 *
96 * FEC slices directly correspond to the data packages sent by the paraslash
97 * senders that use FEC. Each slice is identified by its group number and its
98 * number within the group. All slices have the same size, but the last slice
99 * of the group may not be filled entirely.
100 */
101 struct fec_group {
102 /** The number of the FEC group. */
103 uint32_t num;
104 /** Number of bytes in this group. */
105 uint32_t bytes;
106 /** The first chunk of the current audio file belonging to the group. */
107 uint32_t first_chunk;
108 /** The number of chunks contained in this group. */
109 uint32_t num_chunks;
110 /** When the first chunk was sent. */
111 struct timeval start;
112 /** The duration of the full group. */
113 struct timeval duration;
114 /** The group duration divided by the number of slices. */
115 struct timeval slice_duration;
116 /** Group contains the audio file header that occupies that many slices. */
117 uint8_t num_header_slices;
118 /** Number of bytes per slice for this group. */
119 uint16_t slice_bytes;
120 };
121
122 /** A FEC client is always in one of these states. */
123 enum fec_client_state {
124 FEC_STATE_NONE = 0, /**< not initialized and not enabled */
125 FEC_STATE_DISABLED, /**< temporarily disabled */
126 FEC_STATE_READY_TO_RUN /**< initialized and enabled */
127 };
128
129 /**
130 * Describes one connected FEC client.
131 */
132 struct fec_client {
133 /** Current state of the client */
134 enum fec_client_state state;
135 /** The connected sender client (transport layer). */
136 struct sender_client *sc;
137 /** Parameters requested by the client. */
138 struct fec_client_parms *fcp;
139 /** Used by the core FEC code. */
140 struct fec_parms *parms;
141 /** The position of this client in the fec client list. */
142 struct list_head node;
143 /** When the first slice for this client was sent. */
144 struct timeval stream_start;
145 /** The first chunk sent to this FEC client. */
146 int first_stream_chunk;
147 /** Describes the current group. */
148 struct fec_group group;
149 /** The current slice. */
150 uint8_t current_slice_num;
151 /** The data to be FEC-encoded. */
152 unsigned char **src_data;
153 /** Last time an audio header was sent. */
154 struct timeval next_header_time;
155 /** Extra slices needed to store largest chunk + header. */
156 int num_extra_slices;
157 /** Contains the FEC-encoded data. */
158 unsigned char *enc_buf;
159 /** Maximal packet size. */
160 int mps;
161 };
162
163 /**
164 * Get the chunk time of the current audio file.
165 *
166 * \return A pointer to a struct containing the chunk time, or NULL,
167 * if currently no audio file is selected.
168 */
169 struct timeval *vss_chunk_time(void)
170 {
171 if (mmd->afd.afhi.chunk_tv.tv_sec == 0 &&
172 mmd->afd.afhi.chunk_tv.tv_usec == 0)
173 return NULL;
174 return &mmd->afd.afhi.chunk_tv;
175 }
176
177 /**
178 * Write a fec header to a buffer.
179 *
180 * \param buf The buffer to write to.
181 * \param h The fec header to write.
182 */
183 static void write_fec_header(struct fec_client *fc, struct vss_task *vsst)
184 {
185 char *buf = (char *)fc->enc_buf;
186 struct fec_group *g = &fc->group;
187 struct fec_client_parms *p = fc->fcp;
188
189 write_u32(buf, FEC_MAGIC);
190
191 write_u8(buf + 4, p->slices_per_group + fc->num_extra_slices);
192 write_u8(buf + 5, p->data_slices_per_group + fc->num_extra_slices);
193 write_u32(buf + 6, g->num_header_slices? vsst->header_len : 0);
194
195 write_u32(buf + 10, g->num);
196 write_u32(buf + 14, g->bytes);
197
198 write_u8(buf + 18, fc->current_slice_num);
199 write_u8(buf + 19, 0); /* unused */
200 write_u16(buf + 20, g->slice_bytes);
201 write_u8(buf + 22, g->first_chunk? 0 : 1);
202 write_u8(buf + 23, vsst->header_len? 1 : 0);
203 memset(buf + 24, 0, 8);
204 }
205
206 static bool need_audio_header(struct fec_client *fc, struct vss_task *vsst)
207 {
208 if (!mmd->current_chunk) {
209 tv_add(now, &vsst->header_interval, &fc->next_header_time);
210 return false;
211 }
212 if (!vsst->header_buf)
213 return false;
214 if (vsst->header_len == 0)
215 return false;
216 if (fc->group.num > 0) {
217 if (!fc->fcp->need_periodic_header)
218 return false;
219 if (tv_diff(&fc->next_header_time, now, NULL) > 0)
220 return false;
221 }
222 tv_add(now, &vsst->header_interval, &fc->next_header_time);
223 return true;
224 }
225
226 static bool need_data_slices(struct fec_client *fc, struct vss_task *vsst)
227 {
228 if (fc->group.num > 0)
229 return true;
230 if (!vsst->header_buf)
231 return true;
232 if (vsst->header_len == 0)
233 return true;
234 if (fc->fcp->need_periodic_header)
235 return true;
236 return false;
237 }
238
239 static int fc_num_data_slices(const struct fec_client *fc)
240 {
241 return fc->fcp->data_slices_per_group + fc->num_extra_slices;
242 }
243
244 static int fc_num_slices(const struct fec_client *fc)
245 {
246 return fc->fcp->slices_per_group + fc->num_extra_slices;
247 }
248
249 static int fc_num_redundant_slices(const struct fec_client *fc)
250 {
251 return fc->fcp->slices_per_group - fc->fcp->data_slices_per_group;
252 }
253
254 static int num_slices(long unsigned bytes, int max_payload, int rs)
255 {
256 int ret;
257
258 assert(max_payload > 0);
259 assert(rs > 0);
260 ret = DIV_ROUND_UP(bytes, max_payload);
261 if (ret + rs > 255)
262 return -E_BAD_CT;
263 return ret;
264 }
265
266 /* set group start and group duration */
267 static void set_group_timing(struct fec_client *fc, struct vss_task *vsst)
268 {
269 struct fec_group *g = &fc->group;
270 struct timeval *chunk_tv = vss_chunk_time();
271
272 if (!need_data_slices(fc, vsst))
273 ms2tv(200, &g->duration);
274 else
275 tv_scale(g->num_chunks, chunk_tv, &g->duration);
276 tv_divide(fc->fcp->slices_per_group + fc->num_extra_slices,
277 &g->duration, &g->slice_duration);
278 PARA_DEBUG_LOG("durations (group/chunk/slice): %lu/%lu/%lu\n",
279 tv2ms(&g->duration), tv2ms(chunk_tv), tv2ms(&g->slice_duration));
280 }
281
282 static int initialize_fec_client(struct fec_client *fc, struct vss_task *vsst)
283 {
284 int i, k, n, ret;
285 int hs, ds, rs; /* header/data/redundant slices */
286 struct fec_client_parms *fcp = fc->fcp;
287
288 /* set mps */
289 if (fcp->init_fec) {
290 /*
291 * Set the maximum slice size to the Maximum Packet Size if the
292 * transport protocol allows determination of this value. The user
293 * can specify a slice size up to this value.
294 */
295 ret = fcp->init_fec(fc->sc);
296 if (ret < 0)
297 return ret;
298 fc->mps = ret;
299 } else
300 fc->mps = generic_max_transport_msg_size(fc->sc->fd);
301 if (fc->mps <= FEC_HEADER_SIZE)
302 return -ERRNO_TO_PARA_ERROR(EINVAL);
303
304 /* free previous buffers, if any */
305 if (fc->src_data) {
306 k = fc_num_data_slices(fc);
307 for (i = 0; i < k; i++)
308 free(fc->src_data[i]);
309 free(fc->src_data);
310 fc->src_data = NULL;
311 }
312 free(fc->enc_buf);
313
314 rs = fc_num_redundant_slices(fc);
315 ret = num_slices(vsst->header_len, fc->mps - FEC_HEADER_SIZE, rs);
316 if (ret < 0)
317 return ret;
318 hs = ret;
319 ret = num_slices(mmd->afd.max_chunk_size, fc->mps - FEC_HEADER_SIZE, rs);
320 if (ret < 0)
321 return ret;
322 ds = ret;
323 if (fc->fcp->need_periodic_header)
324 k = hs + ds;
325 else
326 k = PARA_MAX(hs, ds);
327 if (k < fc->fcp->data_slices_per_group)
328 k = fc->fcp->data_slices_per_group;
329 fc->num_extra_slices = k - fc->fcp->data_slices_per_group;
330 n = fc_num_slices(fc);
331 PARA_INFO_LOG("mps: %d, k: %d, n: %d, extra slices: %d\n",
332 fc->mps, k, n, fc->num_extra_slices);
333
334 fec_free(fc->parms);
335 ret = fec_new(k, n, &fc->parms);
336 if (ret < 0)
337 return ret;
338 fc->src_data = para_malloc(k * sizeof(char *));
339 for (i = 0; i < k; i++)
340 fc->src_data[i] = para_malloc(fc->mps);
341 fc->enc_buf = para_malloc(fc->mps);
342
343 fc->state = FEC_STATE_READY_TO_RUN;
344 fc->next_header_time.tv_sec = 0;
345 fc->stream_start = *now;
346 fc->first_stream_chunk = mmd->current_chunk;
347 return 1;
348 }
349
350 static int vss_get_chunk(int chunk_num, struct vss_task *vsst,
351 char **buf, size_t *sz)
352 {
353 int ret;
354
355 /*
356 * Chunk zero is special for header streams: It is the first portion of
357 * the audio file which consists of the audio file header. It may be
358 * arbitrary large due to embedded meta data. Audio format handlers may
359 * replace the header by a stripped one with meta data omitted which is
360 * of bounded size. We always use the stripped header for streaming
361 * rather than the unmodified header (chunk zero).
362 */
363 if (chunk_num == 0 && vsst->header_len > 0) {
364 assert(vsst->header_buf);
365 *buf = vsst->header_buf; /* stripped header */
366 *sz = vsst->header_len;
367 return 0;
368 }
369 ret = afh_get_chunk(chunk_num, &mmd->afd.afhi,
370 mmd->afd.audio_format_id, vsst->map, vsst->mapsize,
371 (const char **)buf, sz, &vsst->afh_context);
372 if (ret < 0) {
373 *buf = NULL;
374 *sz = 0;
375 }
376 return ret;
377 }
378
379 static int compute_group_size(struct vss_task *vsst, struct fec_group *g,
380 int max_bytes)
381 {
382 char *buf;
383 size_t len;
384 int ret, i, max_chunks = PARA_MAX(1LU, 150 / tv2ms(vss_chunk_time()));
385
386 if (g->first_chunk == 0) {
387 g->num_chunks = 1;
388 ret = vss_get_chunk(0, vsst, &buf, &len);
389 if (ret < 0)
390 return ret;
391 g->bytes = len;
392 return 0;
393 }
394
395 g->num_chunks = 0;
396 g->bytes = 0;
397 /*
398 * Include chunks into the group until the group duration is at least
399 * 150ms. For ogg and wma, a single chunk's duration (ogg page/wma
400 * super frame) is already larger than 150ms, so a FEC group consists
401 * of exactly one chunk for these audio formats.
402 */
403 for (i = 0;; i++) {
404 int chunk_num = g->first_chunk + i;
405
406 if (g->bytes > 0 && i >= max_chunks) /* duration limit */
407 break;
408 if (chunk_num >= mmd->afd.afhi.chunks_total) /* eof */
409 break;
410 ret = vss_get_chunk(chunk_num, vsst, &buf, &len);
411 if (ret < 0)
412 return ret;
413 if (g->bytes + len > max_bytes)
414 break;
415 /* Include this chunk */
416 g->bytes += len;
417 g->num_chunks++;
418 }
419 if (g->num_chunks == 0)
420 return -E_EOF;
421 PARA_DEBUG_LOG("group #%u: %u chunks, %u bytes total\n", g->num,
422 g->num_chunks, g->bytes);
423 return 1;
424 }
425
426 /*
427 * Compute the slice size of the next group.
428 *
429 * The FEC parameters n and k are fixed but the slice size varies per
430 * FEC group. We'd like to choose slices as small as possible to avoid
431 * unnecessary FEC calculations but large enough to guarantee that the
432 * k data slices suffice to encode the header (if needed) and the data
433 * chunk(s).
434 *
435 * Once we know the payload of the next group, we define the number s
436 * of bytes per slice for this group by
437 *
438 * s = ceil(payload / k)
439 *
440 * However, for header streams, computing s is more complicated since no
441 * overlapping of header and data slices is possible. Hence we have k >=
442 * 2 and s must satisfy
443 *
444 * (*) ceil(h / s) + ceil(d / s) <= k
445 *
446 * where h and d are payload of the header and the data chunk(s)
447 * respectively. In general there is no value for s such that (*)
448 * becomes an equality, for example if h = 4000, d = 5000 and k = 10.
449 *
450 * We use the following approach for computing a suitable value for s:
451 *
452 * Let
453 * k1 := ceil(k * min(h, d) / (h + d)),
454 * k2 := k - k1.
455 *
456 * Note that k >= 2 implies k1 > 0 and k2 > 0, so
457 *
458 * s := max(ceil(min(h, d) / k1), ceil(max(h, d) / k2))
459 *
460 * is well-defined. Inequality (*) holds for this value of s since k1
461 * slices suffice to store min(h, d) while k2 slices suffice to store
462 * max(h, d), i.e. the first addent of (*) is bounded by k1 and the
463 * second by k2.
464 *
465 * For the above example we obtain
466 *
467 * k1 = ceil(10 * 4000 / 9000) = 5, k2 = 5,
468 * s = max(4000 / 5, 5000 / 5) = 1000,
469 *
470 * which is optimal since a slice size of 999 bytes would already require
471 * 11 slices.
472 */
473 static int compute_slice_size(struct fec_client *fc, struct vss_task *vsst)
474 {
475 struct fec_group *g = &fc->group;
476 int k = fc_num_data_slices(fc);
477 int n = fc_num_slices(fc);
478 int ret, k1, k2, h, d, min, max, sum;
479 int max_slice_bytes = fc->mps - FEC_HEADER_SIZE;
480 int max_group_bytes;
481
482 if (!need_audio_header(fc, vsst)) {
483 max_group_bytes = k * max_slice_bytes;
484 g->num_header_slices = 0;
485 ret = compute_group_size(vsst, g, max_group_bytes);
486 if (ret < 0)
487 return ret;
488 g->slice_bytes = DIV_ROUND_UP(g->bytes, k);
489 if (g->slice_bytes == 0)
490 g->slice_bytes = 1;
491 return 1;
492 }
493 if (!need_data_slices(fc, vsst)) {
494 g->bytes = 0;
495 g->num_chunks = 0;
496 g->slice_bytes = DIV_ROUND_UP(vsst->header_len, k);
497 g->num_header_slices = k;
498 return 1;
499 }
500 h = vsst->header_len;
501 max_group_bytes = (k - num_slices(h, max_slice_bytes, n - k))
502 * max_slice_bytes;
503 ret = compute_group_size(vsst, g, max_group_bytes);
504 if (ret < 0)
505 return ret;
506 d = g->bytes;
507 if (d == 0) {
508 g->slice_bytes = DIV_ROUND_UP(h, k);
509 ret = num_slices(vsst->header_len, g->slice_bytes, n - k);
510 if (ret < 0)
511 return ret;
512 g->num_header_slices = ret;
513 return 1;
514 }
515 min = PARA_MIN(h, d);
516 max = PARA_MAX(h, d);
517 sum = h + d;
518 k1 = DIV_ROUND_UP(k * min, sum);
519 k2 = k - k1;
520 assert(k1 > 0);
521 assert(k2 > 0);
522
523 g->slice_bytes = PARA_MAX(DIV_ROUND_UP(min, k1), DIV_ROUND_UP(max, k2));
524 /*
525 * This value of s := g->slice_bytes satisfies inequality (*) above,
526 * but it might be larger than max_slice_bytes. However, we know that
527 * max_slice_bytes are sufficient to store header and data, so:
528 */
529 g->slice_bytes = PARA_MIN((int)g->slice_bytes, max_slice_bytes);
530
531 ret = num_slices(vsst->header_len, g->slice_bytes, n - k);
532 if (ret < 0)
533 return ret;
534 g->num_header_slices = ret;
535 return 1;
536 }
537
538 static int setup_next_fec_group(struct fec_client *fc, struct vss_task *vsst)
539 {
540 int ret, i, c;
541 size_t copy, src_copied, slice_copied;
542 struct fec_group *g = &fc->group;
543
544 if (fc->state == FEC_STATE_NONE) {
545 ret = initialize_fec_client(fc, vsst);
546 if (ret < 0)
547 return ret;
548 g->first_chunk = mmd->current_chunk;
549 g->num = 0;
550 g->start = *now;
551 } else {
552 struct timeval tmp;
553 if (g->first_chunk + g->num_chunks >= mmd->afd.afhi.chunks_total)
554 return 0;
555 /*
556 * Start and duration of this group depend only on the previous
557 * group. Compute the new group start as g->start += g->duration.
558 */
559 tmp = g->start;
560 tv_add(&tmp, &g->duration, &g->start);
561 set_group_timing(fc, vsst);
562 g->first_chunk += g->num_chunks;
563 g->num++;
564 }
565 compute_slice_size(fc, vsst);
566 assert(g->slice_bytes > 0);
567 fc->current_slice_num = 0;
568 if (g->num == 0)
569 set_group_timing(fc, vsst);
570 /* setup header slices */
571 for (i = 0, src_copied = 0; i < g->num_header_slices; i++) {
572 copy = PARA_MIN((size_t)g->slice_bytes, vsst->header_len - src_copied);
573 if (copy == 0)
574 break;
575 memcpy(fc->src_data[i], vsst->header_buf + src_copied, copy);
576 if (copy < g->slice_bytes)
577 memset(fc->src_data[i] + copy, 0, g->slice_bytes - copy);
578 src_copied += copy;
579 }
580 /*
581 * There might be more than one header slice to fill although only the
582 * first one will be used. Zero out any remaining header slices.
583 */
584 while (i < g->num_header_slices)
585 memset(fc->src_data[i++], 0, g->slice_bytes);
586
587 slice_copied = 0;
588 for (c = g->first_chunk; c < g->first_chunk + g->num_chunks; c++) {
589 char *buf;
590 size_t src_len;
591 ret = vss_get_chunk(c, vsst, &buf, &src_len);
592 if (ret < 0)
593 return ret;
594 if (src_len == 0)
595 continue;
596 src_copied = 0;
597 while (src_copied < src_len) {
598 copy = PARA_MIN((size_t)g->slice_bytes - slice_copied,
599 src_len - src_copied);
600 memcpy(fc->src_data[i] + slice_copied,
601 buf + src_copied, copy);
602 src_copied += copy;
603 slice_copied += copy;
604 if (slice_copied == g->slice_bytes) {
605 i++;
606 slice_copied = 0;
607 }
608 }
609 }
610 if (i < fc_num_data_slices(fc) && slice_copied < g->slice_bytes)
611 memset(fc->src_data[i] + slice_copied, 0,
612 g->slice_bytes - slice_copied);
613 /* zero out remaining slices, if any */
614 while (++i < fc_num_data_slices(fc))
615 memset(fc->src_data[i], 0, g->slice_bytes);
616 PARA_DEBUG_LOG("FEC group %u: %u chunks (%u - %u), %u bytes\n",
617 g->num, g->num_chunks, g->first_chunk,
618 g->first_chunk + g->num_chunks - 1, g->bytes
619 );
620 PARA_DEBUG_LOG("slice_bytes: %d, %d header slices, %d data slices\n",
621 g->slice_bytes, g->num_header_slices, fc_num_data_slices(fc)
622 );
623 return 1;
624 }
625
626 static int compute_next_fec_slice(struct fec_client *fc, struct vss_task *vsst)
627 {
628 if (fc->state == FEC_STATE_NONE || fc->current_slice_num
629 == fc->fcp->slices_per_group + fc->num_extra_slices) {
630 int ret = setup_next_fec_group(fc, vsst);
631 if (ret == 0)
632 return 0;
633 if (ret < 0) {
634 PARA_ERROR_LOG("%s\n", para_strerror(-ret));
635 PARA_ERROR_LOG("FEC client temporarily disabled\n");
636 fc->state = FEC_STATE_DISABLED;
637 return ret;
638 }
639 }
640 write_fec_header(fc, vsst);
641 fec_encode(fc->parms, (const unsigned char * const*)fc->src_data,
642 fc->enc_buf + FEC_HEADER_SIZE, fc->current_slice_num,
643 fc->group.slice_bytes);
644 return 1;
645 }
646
647 /**
648 * Return a buffer that marks the end of the stream.
649 *
650 * \param buf Result pointer.
651 * \return The length of the eof buffer.
652 *
653 * This is used for (multicast) udp streaming where closing the socket on the
654 * sender might not give rise to an eof condition at the peer.
655 */
656 size_t vss_get_fec_eof_packet(const char **buf)
657 {
658 static const char fec_eof_packet[FEC_HEADER_SIZE] = FEC_EOF_PACKET;
659 *buf = fec_eof_packet;
660 return FEC_HEADER_SIZE;
661 }
662
663 /**
664 * Add one entry to the list of active fec clients.
665 *
666 * \param sc Generic sender_client data of the transport layer.
667 * \param fcp FEC parameters as supplied by the transport layer.
668 *
669 * \return Newly allocated fec_client struct.
670 */
671 struct fec_client *vss_add_fec_client(struct sender_client *sc,
672 struct fec_client_parms *fcp)
673 {
674 struct fec_client *fc = para_calloc(sizeof(*fc));
675
676 fc->sc = sc;
677 fc->fcp = fcp;
678 para_list_add(&fc->node, &fec_client_list);
679 return fc;
680 }
681
682 /**
683 * Remove one entry from the list of active fec clients.
684 *
685 * \param fc The client to be removed.
686 */
687 void vss_del_fec_client(struct fec_client *fc)
688 {
689 int i;
690
691 list_del(&fc->node);
692 free(fc->enc_buf);
693 if (fc->src_data) {
694 for (i = 0; i < fc_num_data_slices(fc); i++)
695 free(fc->src_data[i]);
696 free(fc->src_data);
697 }
698 fec_free(fc->parms);
699 free(fc);
700 }
701
702 /*
703 * Compute if/when next slice is due. If it isn't due yet and \a diff is
704 * not \p Null, compute the time difference next - now, where
705 *
706 * next = stream_start + (first_group_chunk - first_stream_chunk)
707 * * chunk_time + slice_num * slice_time
708 */
709 static int next_slice_is_due(struct fec_client *fc, struct timeval *diff)
710 {
711 struct timeval tmp, next;
712 int ret;
713
714 if (fc->state == FEC_STATE_NONE)
715 return 1;
716 tv_scale(fc->current_slice_num, &fc->group.slice_duration, &tmp);
717 tv_add(&tmp, &fc->group.start, &next);
718 ret = tv_diff(&next, now, diff);
719 return ret < 0? 1 : 0;
720 }
721
722 static void set_eof_barrier(struct vss_task *vsst)
723 {
724 struct fec_client *fc;
725 struct timeval timeout = {1, 0}, *chunk_tv = vss_chunk_time();
726
727 if (!chunk_tv)
728 goto out;
729 list_for_each_entry(fc, &fec_client_list, node) {
730 struct timeval group_duration;
731
732 if (fc->state != FEC_STATE_READY_TO_RUN)
733 continue;
734 tv_scale(fc->group.num_chunks, chunk_tv, &group_duration);
735 if (tv_diff(&timeout, &group_duration, NULL) < 0)
736 timeout = group_duration;
737 }
738 out:
739 tv_add(now, &timeout, &vsst->eof_barrier);
740 }
741
742 /**
743 * Check if vss status flag \a P (playing) is set.
744 *
745 * \return Greater than zero if playing, zero otherwise.
746 *
747 */
748 unsigned int vss_playing(void)
749 {
750 return mmd->new_vss_status_flags & VSS_PLAYING;
751 }
752
753 /**
754 * Check if the \a N (next) status flag is set.
755 *
756 * \return Greater than zero if set, zero if not.
757 *
758 */
759 unsigned int vss_next(void)
760 {
761 return mmd->new_vss_status_flags & VSS_NEXT;
762 }
763
764 /**
765 * Check if a reposition request is pending.
766 *
767 * \return Greater than zero if true, zero otherwise.
768 *
769 */
770 unsigned int vss_repos(void)
771 {
772 return mmd->new_vss_status_flags & VSS_REPOS;
773 }
774
775 /**
776 * Check if the vss is currently paused.
777 *
778 * \return Greater than zero if paused, zero otherwise.
779 *
780 */
781 unsigned int vss_paused(void)
782 {
783 return !(mmd->new_vss_status_flags & VSS_NEXT)
784 && !(mmd->new_vss_status_flags & VSS_PLAYING);
785 }
786
787 /**
788 * Check if the vss is currently stopped.
789 *
790 * \return Greater than zero if paused, zero otherwise.
791 *
792 */
793 unsigned int vss_stopped(void)
794 {
795 return (mmd->new_vss_status_flags & VSS_NEXT)
796 && !(mmd->new_vss_status_flags & VSS_PLAYING);
797 }
798
799 static int chk_barrier(const char *bname, const struct timeval *barrier,
800 struct timeval *diff, int print_log)
801 {
802 long ms;
803
804 if (tv_diff(now, barrier, diff) > 0)
805 return 1;
806 ms = tv2ms(diff);
807 if (print_log && ms)
808 PARA_DEBUG_LOG("%s barrier: %lims left\n", bname, ms);
809 return -1;
810 }
811
812 static void vss_compute_timeout(struct sched *s, struct vss_task *vsst)
813 {
814 struct timeval tv;
815 struct fec_client *fc;
816
817 if (!vss_playing() || !vsst->map)
818 return;
819 if (vss_next() && vsst->map) /* only sleep a bit, nec*/
820 return sched_request_timeout_ms(100, s);
821
822 /* Each of these barriers must have passed until we may proceed */
823 if (sched_request_barrier(&vsst->autoplay_barrier, s) == 1)
824 return;
825 if (sched_request_barrier(&vsst->eof_barrier, s) == 1)
826 return;
827 if (sched_request_barrier(&vsst->data_send_barrier, s) == 1)
828 return;
829 /*
830 * Compute the select timeout as the minimal time until the next
831 * chunk/slice is due for any client.
832 */
833 compute_chunk_time(mmd->chunks_sent, &mmd->afd.afhi.chunk_tv,
834 &mmd->stream_start, &tv);
835 if (sched_request_barrier_or_min_delay(&tv, s) == 0)
836 return;
837 list_for_each_entry(fc, &fec_client_list, node) {
838 if (fc->state != FEC_STATE_READY_TO_RUN)
839 continue;
840 if (next_slice_is_due(fc, &tv))
841 return sched_min_delay(s);
842 sched_request_timeout(&tv, s);
843 }
844 }
845
846 static void vss_eof(struct vss_task *vsst)
847 {
848
849 if (!vsst->map)
850 return;
851 if (mmd->new_vss_status_flags & VSS_NOMORE)
852 mmd->new_vss_status_flags = VSS_NEXT;
853 set_eof_barrier(vsst);
854 afh_free_header(vsst->header_buf, mmd->afd.audio_format_id);
855 vsst->header_buf = NULL;
856 para_munmap(vsst->map, vsst->mapsize);
857 vsst->map = NULL;
858 mmd->chunks_sent = 0;
859 //mmd->offset = 0;
860 mmd->afd.afhi.seconds_total = 0;
861 mmd->afd.afhi.chunk_tv.tv_sec = 0;
862 mmd->afd.afhi.chunk_tv.tv_usec = 0;
863 free(mmd->afd.afhi.chunk_table);
864 mmd->afd.afhi.chunk_table = NULL;
865 vsst->mapsize = 0;
866 afh_close(vsst->afh_context, mmd->afd.audio_format_id);
867 vsst->afh_context = NULL;
868 mmd->events++;
869 }
870
871 static int need_to_request_new_audio_file(struct vss_task *vsst)
872 {
873 struct timeval diff;
874
875 if (vsst->map) /* have audio file */
876 return 0;
877 if (!vss_playing()) /* don't need one */
878 return 0;
879 if (mmd->new_vss_status_flags & VSS_NOMORE)
880 return 0;
881 if (vsst->afsss == AFS_SOCKET_AFD_PENDING) /* already requested one */
882 return 0;
883 if (chk_barrier("autoplay_delay", &vsst->autoplay_barrier,
884 &diff, 1) < 0)
885 return 0;
886 return 1;
887 }
888
889 static void set_mmd_offset(void)
890 {
891 struct timeval offset;
892 tv_scale(mmd->current_chunk, &mmd->afd.afhi.chunk_tv, &offset);
893 mmd->offset = tv2ms(&offset);
894 }
895
896 static void vss_pre_select(struct sched *s, void *context)
897 {
898 int i;
899 struct vss_task *vsst = context;
900
901 if (need_to_request_new_audio_file(vsst)) {
902 PARA_DEBUG_LOG("ready and playing, but no audio file\n");
903 para_fd_set(vsst->afs_socket, &s->wfds, &s->max_fileno);
904 vsst->afsss = AFS_SOCKET_CHECK_FOR_WRITE;
905 } else
906 para_fd_set(vsst->afs_socket, &s->rfds, &s->max_fileno);
907 FOR_EACH_SENDER(i) {
908 if (!senders[i]->pre_select)
909 continue;
910 senders[i]->pre_select(&s->max_fileno, &s->rfds, &s->wfds);
911 }
912 vss_compute_timeout(s, vsst);
913 }
914
915 static int recv_afs_msg(int afs_socket, int *fd, uint32_t *code, uint32_t *data)
916 {
917 char control[255] __a_aligned(8), buf[8];
918 struct msghdr msg = {.msg_iov = NULL};
919 struct cmsghdr *cmsg;
920 struct iovec iov;
921 int ret = 0;
922
923 *fd = -1;
924 iov.iov_base = buf;
925 iov.iov_len = sizeof(buf);
926 msg.msg_iov = &iov;
927 msg.msg_iovlen = 1;
928 msg.msg_control = control;
929 msg.msg_controllen = sizeof(control);
930 memset(buf, 0, sizeof(buf));
931 ret = recvmsg(afs_socket, &msg, 0);
932 if (ret < 0)
933 return -ERRNO_TO_PARA_ERROR(errno);
934 if (iov.iov_len != sizeof(buf))
935 return -E_AFS_SHORT_READ;
936 *code = *(uint32_t*)buf;
937 *data = *(uint32_t*)(buf + 4);
938 for (cmsg = CMSG_FIRSTHDR(&msg); cmsg; cmsg = CMSG_NXTHDR(&msg, cmsg)) {
939 if (cmsg->cmsg_level != SOL_SOCKET
940 || cmsg->cmsg_type != SCM_RIGHTS)
941 continue;
942 if ((cmsg->cmsg_len - CMSG_LEN(0)) / sizeof(int) != 1)
943 continue;
944 *fd = *(int *)CMSG_DATA(cmsg);
945 }
946 return 1;
947 }
948
949 #ifndef MAP_POPULATE
950 /** As of 2018, neither FreeBSD-11.2 nor NetBSD-8.0 have MAP_POPULATE. */
951 #define MAP_POPULATE 0
952 #endif
953
954 static void recv_afs_result(struct vss_task *vsst, fd_set *rfds)
955 {
956 int ret, passed_fd, shmid;
957 uint32_t afs_code = 0, afs_data = 0;
958 struct stat statbuf;
959
960 if (!FD_ISSET(vsst->afs_socket, rfds))
961 return;
962 ret = recv_afs_msg(vsst->afs_socket, &passed_fd, &afs_code, &afs_data);
963 if (ret == -ERRNO_TO_PARA_ERROR(EAGAIN))
964 return;
965 if (ret < 0)
966 goto err;
967 vsst->afsss = AFS_SOCKET_READY;
968 if (afs_code == NO_ADMISSIBLE_FILES) {
969 PARA_NOTICE_LOG("no admissible files\n");
970 ret = 0;
971 goto err;
972 }
973 ret = -E_NOFD;
974 if (afs_code != NEXT_AUDIO_FILE) {
975 PARA_ERROR_LOG("afs code: %u, expected: %d\n", afs_code,
976 NEXT_AUDIO_FILE);
977 goto err;
978 }
979 if (passed_fd < 0)
980 goto err;
981 shmid = afs_data;
982 ret = load_afd(shmid, &mmd->afd);
983 if (ret < 0)
984 goto err;
985 shm_destroy(shmid);
986 ret = fstat(passed_fd, &statbuf);
987 if (ret < 0) {
988 PARA_ERROR_LOG("fstat error:\n");
989 ret = -ERRNO_TO_PARA_ERROR(errno);
990 goto err;
991 }
992 ret = para_mmap(statbuf.st_size, PROT_READ, MAP_PRIVATE | MAP_POPULATE,
993 passed_fd, &vsst->map);
994 if (ret < 0)
995 goto err;
996 vsst->mapsize = statbuf.st_size;
997 close(passed_fd);
998 mmd->chunks_sent = 0;
999 mmd->current_chunk = 0;
1000 mmd->offset = 0;
1001 mmd->events++;
1002 mmd->num_played++;
1003 mmd->new_vss_status_flags &= (~VSS_NEXT);
1004 afh_get_header(&mmd->afd.afhi, mmd->afd.audio_format_id,
1005 vsst->map, vsst->mapsize, &vsst->header_buf, &vsst->header_len);
1006 return;
1007 err:
1008 free(mmd->afd.afhi.chunk_table);
1009 mmd->afd.afhi.chunk_table = NULL;
1010 if (passed_fd >= 0)
1011 close(passed_fd);
1012 if (ret < 0)
1013 PARA_ERROR_LOG("%s\n", para_strerror(-ret));
1014 mmd->new_vss_status_flags = VSS_NEXT;
1015 }
1016
1017 /**
1018 * Main sending function.
1019 *
1020 * This function gets called from vss_post_select(). It checks whether the next
1021 * chunk of data should be pushed out. It obtains a pointer to the data to be
1022 * sent out as well as its length from mmd->afd.afhi. This information is then
1023 * passed to each supported sender's send() function as well as to the send()
1024 * functions of each registered fec client.
1025 */
1026 static void vss_send(struct vss_task *vsst)
1027 {
1028 int i, ret;
1029 bool fec_active = false;
1030 struct timeval due;
1031 struct fec_client *fc, *tmp_fc;
1032 char *buf;
1033 size_t len;
1034
1035 if (!vsst->map || !vss_playing())
1036 return;
1037 if (chk_barrier("eof", &vsst->eof_barrier, &due, 1) < 0)
1038 return;
1039 if (chk_barrier("data send", &vsst->data_send_barrier, &due, 1) < 0)
1040 return;
1041 list_for_each_entry_safe(fc, tmp_fc, &fec_client_list, node) {
1042 if (fc->state == FEC_STATE_DISABLED)
1043 continue;
1044 if (!next_slice_is_due(fc, NULL)) {
1045 fec_active = true;
1046 continue;
1047 }
1048 if (compute_next_fec_slice(fc, vsst) <= 0)
1049 continue;
1050 PARA_DEBUG_LOG("sending %u:%u (%u bytes)\n", fc->group.num,
1051 fc->current_slice_num, fc->group.slice_bytes);
1052 fc->current_slice_num++;
1053 fc->fcp->send_fec(fc->sc, (char *)fc->enc_buf,
1054 fc->group.slice_bytes + FEC_HEADER_SIZE);
1055 fec_active = true;
1056 }
1057 if (mmd->current_chunk >= mmd->afd.afhi.chunks_total) { /* eof */
1058 if (!fec_active)
1059 mmd->new_vss_status_flags |= VSS_NEXT;
1060 return;
1061 }
1062 compute_chunk_time(mmd->chunks_sent, &mmd->afd.afhi.chunk_tv,
1063 &mmd->stream_start, &due);
1064 if (tv_diff(&due, now, NULL) > 0)
1065 return;
1066 if (!mmd->chunks_sent) {
1067 mmd->stream_start = *now;
1068 mmd->events++;
1069 set_mmd_offset();
1070 }
1071 ret = vss_get_chunk(mmd->current_chunk, vsst, &buf, &len);
1072 if (ret < 0) {
1073 PARA_ERROR_LOG("could not get chunk %lu: %s\n",
1074 mmd->current_chunk, para_strerror(-ret));
1075 } else {
1076 /*
1077 * We call ->send() even if len is zero because senders might
1078 * have data queued which can be sent now.
1079 */
1080 FOR_EACH_SENDER(i) {
1081 if (!senders[i]->send)
1082 continue;
1083 senders[i]->send(mmd->current_chunk, mmd->chunks_sent,
1084 buf, len, vsst->header_buf, vsst->header_len);
1085 }
1086 }
1087 mmd->chunks_sent++;
1088 mmd->current_chunk++;
1089 }
1090
1091 static int vss_post_select(struct sched *s, void *context)
1092 {
1093 int ret, i;
1094 struct vss_task *vsst = context;
1095
1096 ret = task_get_notification(vsst->task);
1097 if (ret < 0) {
1098 afh_free_header(vsst->header_buf, mmd->afd.audio_format_id);
1099 return ret;
1100 }
1101 if (!vsst->map || vss_next() || vss_paused() || vss_repos()) {
1102 /* shut down senders and fec clients */
1103 struct fec_client *fc, *tmp;
1104 FOR_EACH_SENDER(i)
1105 if (senders[i]->shutdown_clients)
1106 senders[i]->shutdown_clients();
1107 list_for_each_entry_safe(fc, tmp, &fec_client_list, node)
1108 fc->state = FEC_STATE_NONE;
1109 mmd->stream_start.tv_sec = 0;
1110 mmd->stream_start.tv_usec = 0;
1111 }
1112 if (vss_next())
1113 vss_eof(vsst);
1114 else if (vss_paused()) {
1115 if (mmd->chunks_sent)
1116 set_eof_barrier(vsst);
1117 mmd->chunks_sent = 0;
1118 } else if (vss_repos()) { /* repositioning due to ff/jmp command */
1119 tv_add(now, &vsst->announce_tv, &vsst->data_send_barrier);
1120 set_eof_barrier(vsst);
1121 mmd->chunks_sent = 0;
1122 mmd->current_chunk = afh_get_start_chunk(mmd->repos_request,
1123 &mmd->afd.afhi, mmd->afd.audio_format_id);
1124 mmd->new_vss_status_flags &= ~VSS_REPOS;
1125 set_mmd_offset();
1126 }
1127 /* If a sender command is pending, run it. */
1128 if (mmd->sender_cmd_data.cmd_num >= 0) {
1129 int num = mmd->sender_cmd_data.cmd_num,
1130 sender_num = mmd->sender_cmd_data.sender_num;
1131
1132 if (senders[sender_num]->client_cmds[num]) {
1133 ret = senders[sender_num]->client_cmds[num]
1134 (&mmd->sender_cmd_data);
1135 if (ret < 0)
1136 PARA_ERROR_LOG("%s\n", para_strerror(-ret));
1137 }
1138 mmd->sender_cmd_data.cmd_num = -1;
1139 }
1140 if (vsst->afsss != AFS_SOCKET_CHECK_FOR_WRITE)
1141 recv_afs_result(vsst, &s->rfds);
1142 else if (FD_ISSET(vsst->afs_socket, &s->wfds)) {
1143 PARA_NOTICE_LOG("requesting new fd from afs\n");
1144 ret = write_buffer(vsst->afs_socket, "new");
1145 if (ret < 0)
1146 PARA_CRIT_LOG("%s\n", para_strerror(-ret));
1147 else
1148 vsst->afsss = AFS_SOCKET_AFD_PENDING;
1149 }
1150 FOR_EACH_SENDER(i) {
1151 if (!senders[i]->post_select)
1152 continue;
1153 senders[i]->post_select(&s->rfds, &s->wfds);
1154 }
1155 if ((vss_playing() && !(mmd->vss_status_flags & VSS_PLAYING)) ||
1156 (vss_next() && vss_playing()))
1157 tv_add(now, &vsst->announce_tv, &vsst->data_send_barrier);
1158 vss_send(vsst);
1159 return 0;
1160 }
1161
1162 /**
1163 * Initialize the virtual streaming system task.
1164 *
1165 * \param afs_socket The fd for communication with afs.
1166 * \param s The scheduler to register the vss task to.
1167 *
1168 * This also initializes all supported senders and starts streaming
1169 * if the --autoplay command line flag was given.
1170 */
1171 void vss_init(int afs_socket, struct sched *s)
1172 {
1173 static struct vss_task vss_task_struct, *vsst = &vss_task_struct;
1174 int i;
1175 long unsigned announce_time = OPT_UINT32_VAL(ANNOUNCE_TIME),
1176 autoplay_delay = OPT_UINT32_VAL(AUTOPLAY_DELAY);
1177 vsst->header_interval.tv_sec = 5; /* should this be configurable? */
1178 vsst->afs_socket = afs_socket;
1179 ms2tv(announce_time, &vsst->announce_tv);
1180 PARA_INFO_LOG("announce timeval: %lums\n", tv2ms(&vsst->announce_tv));
1181 init_list_head(&fec_client_list);
1182 FOR_EACH_SENDER(i) {
1183 PARA_NOTICE_LOG("initializing %s sender\n", senders[i]->name);
1184 senders[i]->init();
1185 }
1186 mmd->sender_cmd_data.cmd_num = -1;
1187 if (OPT_GIVEN(AUTOPLAY)) {
1188 struct timeval tmp;
1189 mmd->vss_status_flags |= VSS_PLAYING;
1190 mmd->new_vss_status_flags |= VSS_PLAYING;
1191 ms2tv(autoplay_delay, &tmp);
1192 tv_add(clock_get_realtime(NULL), &tmp, &vsst->autoplay_barrier);
1193 tv_add(&vsst->autoplay_barrier, &vsst->announce_tv,
1194 &vsst->data_send_barrier);
1195 }
1196 vsst->task = task_register(&(struct task_info) {
1197 .name = "vss",
1198 .pre_select = vss_pre_select,
1199 .post_select = vss_post_select,
1200 .context = vsst,
1201 }, s);
1202 }
1203
1204 /**
1205 * Turn off the virtual streaming system.
1206 *
1207 * This is only executed on exit. It calls the ->shutdown method of all senders.
1208 */
1209 void vss_shutdown(void)
1210 {
1211 int i;
1212
1213 FOR_EACH_SENDER(i) {
1214 if (!senders[i]->shutdown)
1215 continue;
1216 PARA_NOTICE_LOG("shutting down %s sender\n", senders[i]->name);
1217 senders[i]->shutdown();
1218 }
1219 }