Merge branch 'maint'
[paraslash.git] / afs.c
1 /*
2 * Copyright (C) 2007 Andre Noll <maan@tuebingen.mpg.de>
3 *
4 * Licensed under the GPL v2. For licencing details see COPYING.
5 */
6
7 /** \file afs.c Paraslash's audio file selector. */
8
9 #include <netinet/in.h>
10 #include <sys/socket.h>
11 #include <regex.h>
12 #include <signal.h>
13 #include <fnmatch.h>
14 #include <osl.h>
15 #include <arpa/inet.h>
16 #include <sys/un.h>
17 #include <netdb.h>
18
19 #include "server.cmdline.h"
20 #include "para.h"
21 #include "error.h"
22 #include "crypt.h"
23 #include "string.h"
24 #include "afh.h"
25 #include "afs.h"
26 #include "server.h"
27 #include "net.h"
28 #include "ipc.h"
29 #include "list.h"
30 #include "sched.h"
31 #include "fd.h"
32 #include "signal.h"
33 #include "mood.h"
34 #include "sideband.h"
35 #include "command.h"
36
37 /** The osl tables used by afs. \sa blob.c. */
38 enum afs_table_num {
39 /** Contains audio file information. See aft.c. */
40 TBLNUM_AUDIO_FILES,
41 /** The table for the paraslash attributes. See attribute.c. */
42 TBLNUM_ATTRIBUTES,
43 /**
44 * Paraslash's scoring system is based on Gaussian normal
45 * distributions, and the relevant data is stored in the rbtrees of an
46 * osl table containing only volatile columns. See score.c for
47 * details.
48 */
49 TBLNUM_SCORES,
50 /**
51 * A standard blob table containing the mood definitions. For details
52 * see mood.c.
53 */
54 TBLNUM_MOODS,
55 /** A blob table containing lyrics on a per-song basis. */
56 TBLNUM_LYRICS,
57 /** Another blob table for images (for example album cover art). */
58 TBLNUM_IMAGES,
59 /** Yet another blob table for storing standard playlists. */
60 TBLNUM_PLAYLIST,
61 /** How many tables are in use? */
62 NUM_AFS_TABLES
63 };
64
65 static struct afs_table afs_tables[NUM_AFS_TABLES] = {
66 [TBLNUM_AUDIO_FILES] = {.init = aft_init, .name = "audio_files"},
67 [TBLNUM_ATTRIBUTES] = {.init = attribute_init, .name = "attributes"},
68 [TBLNUM_SCORES] = {.init = score_init, .name = "scores"},
69 [TBLNUM_MOODS] = {.init = moods_init, .name = "moods"},
70 [TBLNUM_LYRICS] = {.init = lyrics_init, .name = "lyrics"},
71 [TBLNUM_IMAGES] = {.init = images_init, .name = "images"},
72 [TBLNUM_PLAYLIST] = {.init = playlists_init, .name = "playlists"},
73 };
74
75 struct command_task {
76 /** The file descriptor for the local socket. */
77 int fd;
78 /**
79 * Value sent by the command handlers to identify themselves as
80 * children of the running para_server.
81 */
82 uint32_t cookie;
83 /** The associated task structure. */
84 struct task *task;
85 };
86
87 extern int mmd_mutex;
88 extern struct misc_meta_data *mmd;
89
90 static int server_socket;
91 static struct command_task command_task_struct;
92 static struct signal_task *signal_task;
93
94 static enum play_mode current_play_mode;
95 static char *current_mop; /* mode or playlist specifier. NULL means dummy mood */
96
97 /**
98 * A random number used to "authenticate" the connection.
99 *
100 * para_server picks this number by random before forking the afs process. The
101 * command handlers write this number together with the id of the shared memory
102 * area containing the query. This way, a malicious local user has to know this
103 * number to be able to cause the afs process to crash by sending fake queries.
104 */
105 extern uint32_t afs_socket_cookie;
106
107 /**
108 * Struct to let command handlers execute a callback in afs context.
109 *
110 * Commands that need to change the state of afs can't change the relevant data
111 * structures directly because commands are executed in a child process, i.e.
112 * they get their own virtual address space.
113 *
114 * This structure is used by \p send_callback_request() (executed from handler
115 * context) in order to let the afs process call the specified function. An
116 * instance of that structure is written to a shared memory area together with
117 * the arguments to the callback function. The identifier of the shared memory
118 * area is written to the command socket.
119 *
120 * The afs process accepts connections on the command socket and reads the
121 * shared memory id, attaches the corresponding area, calls the given handler to
122 * perform the desired action and to optionally compute a result.
123 *
124 * The result and a \p callback_result structure is then written to another
125 * shared memory area. The identifier for that area is written to the handler's
126 * command socket, so that the handler process can read the id, attach the
127 * shared memory area and use the result.
128 *
129 * \sa struct callback_result.
130 */
131 struct callback_query {
132 /** The function to be called. */
133 callback_function *handler;
134 /** The number of bytes of the query */
135 size_t query_size;
136 };
137
138 /**
139 * Structure embedded in the result of a callback.
140 *
141 * If the callback produced a result, an instance of that structure is embedded
142 * into the shared memory area holding the result, mainly to let the command
143 * handler know the size of the result.
144 *
145 * \sa struct callback_query.
146 */
147 struct callback_result {
148 /** The number of bytes of the result. */
149 size_t result_size;
150 /** The band designator (loglevel for the result). */
151 uint8_t band;
152 };
153
154 static int dispatch_result(int result_shmid, callback_result_handler *handler,
155 void *private_result_data)
156 {
157 struct osl_object result;
158 void *result_shm;
159 /* must attach r/w as result.data might get encrypted in-place. */
160 int ret2, ret = shm_attach(result_shmid, ATTACH_RW, &result_shm);
161 struct callback_result *cr = result_shm;
162
163 if (ret < 0) {
164 PARA_ERROR_LOG("attach failed: %s\n", para_strerror(-ret));
165 return ret;
166 }
167 result.size = cr->result_size;
168 result.data = result_shm + sizeof(*cr);
169 if (result.size) {
170 assert(handler);
171 ret = handler(&result, cr->band, private_result_data);
172 if (ret < 0)
173 PARA_NOTICE_LOG("result handler error: %s\n",
174 para_strerror(-ret));
175 }
176 ret2 = shm_detach(result_shm);
177 if (ret2 < 0) {
178 PARA_ERROR_LOG("detach failed: %s\n", para_strerror(-ret2));
179 if (ret >= 0)
180 ret = ret2;
181 }
182 return ret;
183 }
184
185 /**
186 * Ask the afs process to call a given function.
187 *
188 * \param f The function to be called.
189 * \param query Pointer to arbitrary data for the callback.
190 * \param result_handler Called for each shm area sent by the callback.
191 * \param private_result_data Passed verbatim to \a result_handler.
192 *
193 * This function creates a socket for communication with the afs process and a
194 * shared memory area (sma) to which the buffer pointed to by \a query is
195 * copied. It then notifies the afs process that the callback function \a f
196 * should be executed by sending the shared memory identifier (shmid) to the
197 * socket.
198 *
199 * If the callback produces a result, it sends any number of shared memory
200 * identifiers back via the socket. For each such identifier received, \a
201 * result_handler is called. The contents of the sma identified by the received
202 * shmid are passed to that function as an osl object. The private_result_data
203 * pointer is passed as the second argument to \a result_handler.
204 *
205 * \return Number of shared memory areas dispatched on success, negative on errors.
206 *
207 * \sa send_option_arg_callback_request(), send_standard_callback_request().
208 */
209 int send_callback_request(callback_function *f, struct osl_object *query,
210 callback_result_handler *result_handler,
211 void *private_result_data)
212 {
213 struct callback_query *cq;
214 int ret, fd = -1, query_shmid, result_shmid;
215 void *query_shm;
216 char buf[sizeof(afs_socket_cookie) + sizeof(int)];
217 size_t query_shm_size = sizeof(*cq);
218 int dispatch_error = 0, num_dispatched = 0;
219
220 if (query)
221 query_shm_size += query->size;
222 ret = shm_new(query_shm_size);
223 if (ret < 0)
224 return ret;
225 query_shmid = ret;
226 ret = shm_attach(query_shmid, ATTACH_RW, &query_shm);
227 if (ret < 0)
228 goto out;
229 cq = query_shm;
230 cq->handler = f;
231 cq->query_size = query_shm_size - sizeof(*cq);
232
233 if (query)
234 memcpy(query_shm + sizeof(*cq), query->data, query->size);
235 ret = shm_detach(query_shm);
236 if (ret < 0)
237 goto out;
238
239 *(uint32_t *)buf = afs_socket_cookie;
240 *(int *)(buf + sizeof(afs_socket_cookie)) = query_shmid;
241
242 ret = connect_local_socket(conf.afs_socket_arg);
243 if (ret < 0)
244 goto out;
245 fd = ret;
246 ret = write_all(fd, buf, sizeof(buf));
247 if (ret < 0)
248 goto out;
249 /*
250 * Read all shmids from afs.
251 *
252 * Even if the dispatcher returns an error we _must_ continue to read
253 * shmids from fd so that we can destroy all shared memory areas that
254 * have been created for us by the afs process.
255 */
256 for (;;) {
257 ret = recv_bin_buffer(fd, buf, sizeof(int));
258 if (ret <= 0)
259 goto out;
260 assert(ret == sizeof(int));
261 ret = *(int *) buf;
262 assert(ret > 0);
263 result_shmid = ret;
264 if (!dispatch_error) {
265 ret = dispatch_result(result_shmid, result_handler,
266 private_result_data);
267 if (ret < 0)
268 dispatch_error = 1;
269 }
270 ret = shm_destroy(result_shmid);
271 if (ret < 0)
272 PARA_CRIT_LOG("destroy result failed: %s\n",
273 para_strerror(-ret));
274 num_dispatched++;
275 }
276 out:
277 if (shm_destroy(query_shmid) < 0)
278 PARA_CRIT_LOG("shm destroy error\n");
279 if (fd >= 0)
280 close(fd);
281 // PARA_DEBUG_LOG("callback_ret: %d\n", ret);
282 return ret < 0? ret : num_dispatched;
283 }
284
285 /**
286 * Send a callback request passing an options structure and an argument vector.
287 *
288 * \param options pointer to an arbitrary data structure.
289 * \param argc Argument count.
290 * \param argv Standard argument vector.
291 * \param f The callback function.
292 * \param result_handler See \ref send_callback_request.
293 * \param private_result_data See \ref send_callback_request.
294 *
295 * Some command handlers pass command-specific options to a callback, together
296 * with a list of further arguments (often a list of audio files). This
297 * function allows to pass an arbitrary structure (given as an osl object) and
298 * a usual argument vector to the specified callback.
299 *
300 * \return The return value of the underlying call to \ref
301 * send_callback_request().
302 *
303 * \sa send_standard_callback_request(), send_callback_request().
304 */
305 int send_option_arg_callback_request(struct osl_object *options,
306 int argc, char * const * const argv, callback_function *f,
307 callback_result_handler *result_handler,
308 void *private_result_data)
309 {
310 char *p;
311 int i, ret;
312 struct osl_object query = {.size = options? options->size : 0};
313
314 for (i = 0; i < argc; i++)
315 query.size += strlen(argv[i]) + 1;
316 query.data = para_malloc(query.size);
317 p = query.data;
318 if (options) {
319 memcpy(query.data, options->data, options->size);
320 p += options->size;
321 }
322 for (i = 0; i < argc; i++) {
323 strcpy(p, argv[i]); /* OK */
324 p += strlen(argv[i]) + 1;
325 }
326 ret = send_callback_request(f, &query, result_handler,
327 private_result_data);
328 free(query.data);
329 return ret;
330 }
331
332 /**
333 * Send a callback request with an argument vector only.
334 *
335 * \param argc The same meaning as in send_option_arg_callback_request().
336 * \param argv The same meaning as in send_option_arg_callback_request().
337 * \param f The same meaning as in send_option_arg_callback_request().
338 * \param result_handler See \ref send_callback_request.
339 * \param private_result_data See \ref send_callback_request.
340 *
341 * This is similar to send_option_arg_callback_request(), but no options buffer
342 * is passed to the parent process.
343 *
344 * \return The return value of the underlying call to
345 * send_option_arg_callback_request().
346 */
347 int send_standard_callback_request(int argc, char * const * const argv,
348 callback_function *f, callback_result_handler *result_handler,
349 void *private_result_data)
350 {
351 return send_option_arg_callback_request(NULL, argc, argv, f, result_handler,
352 private_result_data);
353 }
354
355 static int action_if_pattern_matches(struct osl_row *row, void *data)
356 {
357 struct pattern_match_data *pmd = data;
358 struct osl_object name_obj;
359 const char *p, *name;
360 int ret = osl(osl_get_object(pmd->table, row, pmd->match_col_num, &name_obj));
361 const char *pattern_txt = (const char *)pmd->patterns.data;
362
363 if (ret < 0)
364 return ret;
365 name = (char *)name_obj.data;
366 if ((!name || !*name) && (pmd->pm_flags & PM_SKIP_EMPTY_NAME))
367 return 1;
368 if (!pmd->patterns.size && (pmd->pm_flags & PM_NO_PATTERN_MATCHES_EVERYTHING))
369 return pmd->action(pmd->table, row, name, pmd->data);
370 for (p = pattern_txt; p < pattern_txt + pmd->patterns.size;
371 p += strlen(p) + 1) {
372 ret = fnmatch(p, name, pmd->fnmatch_flags);
373 if (ret == FNM_NOMATCH)
374 continue;
375 if (ret)
376 return -E_FNMATCH;
377 ret = pmd->action(pmd->table, row, name, pmd->data);
378 if (ret >= 0)
379 pmd->num_matches++;
380 return ret;
381 }
382 return 1;
383 }
384
385 /**
386 * Execute the given function for each matching row.
387 *
388 * \param pmd Describes what to match and how.
389 *
390 * \return Standard.
391 */
392 int for_each_matching_row(struct pattern_match_data *pmd)
393 {
394 if (pmd->pm_flags & PM_REVERSE_LOOP)
395 return osl(osl_rbtree_loop_reverse(pmd->table, pmd->loop_col_num, pmd,
396 action_if_pattern_matches));
397 return osl(osl_rbtree_loop(pmd->table, pmd->loop_col_num, pmd,
398 action_if_pattern_matches));
399 }
400
401 /**
402 * Compare two osl objects of string type.
403 *
404 * \param obj1 Pointer to the first object.
405 * \param obj2 Pointer to the second object.
406 *
407 * In any case, only \p MIN(obj1->size, obj2->size) characters of each string
408 * are taken into account.
409 *
410 * \return It returns an integer less than, equal to, or greater than zero if
411 * \a obj1 is found, respectively, to be less than, to match, or be greater than
412 * obj2.
413 *
414 * \sa strcmp(3), strncmp(3), osl_compare_func.
415 */
416 int string_compare(const struct osl_object *obj1, const struct osl_object *obj2)
417 {
418 const char *str1 = (const char *)obj1->data;
419 const char *str2 = (const char *)obj2->data;
420 return strncmp(str1, str2, PARA_MIN(obj1->size, obj2->size));
421 }
422
423 static int pass_afd(int fd, char *buf, size_t size)
424 {
425 struct msghdr msg = {.msg_iov = NULL};
426 struct cmsghdr *cmsg;
427 char control[255];
428 int ret;
429 struct iovec iov;
430
431 iov.iov_base = buf;
432 iov.iov_len = size;
433
434 msg.msg_iov = &iov;
435 msg.msg_iovlen = 1;
436
437 msg.msg_control = control;
438 msg.msg_controllen = sizeof(control);
439
440 cmsg = CMSG_FIRSTHDR(&msg);
441 cmsg->cmsg_level = SOL_SOCKET;
442 cmsg->cmsg_type = SCM_RIGHTS;
443 cmsg->cmsg_len = CMSG_LEN(sizeof(int));
444 *(int *)CMSG_DATA(cmsg) = fd;
445
446 /* Sum of the length of all control messages in the buffer */
447 msg.msg_controllen = cmsg->cmsg_len;
448 PARA_DEBUG_LOG("passing %zu bytes and fd %d\n", size, fd);
449 ret = sendmsg(server_socket, &msg, 0);
450 if (ret < 0) {
451 ret = -ERRNO_TO_PARA_ERROR(errno);
452 return ret;
453 }
454 return 1;
455 }
456
457 /**
458 * Open the audio file with highest score.
459 *
460 * This stores all information for streaming the "best" audio file in a shared
461 * memory area. The id of that area and an open file descriptor for the next
462 * audio file are passed to the server process.
463 *
464 * \return Standard.
465 *
466 * \sa open_and_update_audio_file().
467 */
468 static int open_next_audio_file(void)
469 {
470 struct osl_row *aft_row;
471 struct audio_file_data afd;
472 int ret, shmid;
473 char buf[8];
474 long score;
475 again:
476 PARA_NOTICE_LOG("getting next audio file\n");
477 ret = score_get_best(&aft_row, &score);
478 if (ret < 0) {
479 PARA_ERROR_LOG("%s\n", para_strerror(-ret));
480 goto no_admissible_files;
481 }
482 ret = open_and_update_audio_file(aft_row, score, &afd);
483 if (ret < 0) {
484 ret = score_delete(aft_row);
485 if (ret < 0) {
486 PARA_ERROR_LOG("%s\n", para_strerror(-ret));
487 goto no_admissible_files;
488 }
489 goto again;
490 }
491 shmid = ret;
492 if (!write_ok(server_socket)) {
493 ret = -E_AFS_SOCKET;
494 goto destroy;
495 }
496 *(uint32_t *)buf = NEXT_AUDIO_FILE;
497 *(uint32_t *)(buf + 4) = (uint32_t)shmid;
498 ret = pass_afd(afd.fd, buf, 8);
499 close(afd.fd);
500 if (ret >= 0)
501 return ret;
502 destroy:
503 shm_destroy(shmid);
504 return ret;
505 no_admissible_files:
506 *(uint32_t *)buf = NO_ADMISSIBLE_FILES;
507 *(uint32_t *)(buf + 4) = (uint32_t)0;
508 return write_all(server_socket, buf, 8);
509 }
510
511 /* Never fails if arg == NULL */
512 static int activate_mood_or_playlist(char *arg, int *num_admissible)
513 {
514 enum play_mode mode;
515 int ret;
516
517 if (!arg) {
518 ret = change_current_mood(NULL); /* always successful */
519 mode = PLAY_MODE_MOOD;
520 } else {
521 if (!strncmp(arg, "p/", 2)) {
522 ret = playlist_open(arg + 2);
523 mode = PLAY_MODE_PLAYLIST;
524 } else if (!strncmp(arg, "m/", 2)) {
525 ret = change_current_mood(arg + 2);
526 mode = PLAY_MODE_MOOD;
527 } else
528 return -E_AFS_SYNTAX;
529 if (ret < 0)
530 return ret;
531 }
532 if (num_admissible)
533 *num_admissible = ret;
534 current_play_mode = mode;
535 if (arg != current_mop) {
536 free(current_mop);
537 if (arg) {
538 current_mop = para_strdup(arg);
539 mutex_lock(mmd_mutex);
540 strncpy(mmd->afs_mode_string, arg,
541 sizeof(mmd->afs_mode_string));
542 mmd->afs_mode_string[sizeof(mmd->afs_mode_string) - 1] = '\0';
543 mutex_unlock(mmd_mutex);
544 } else {
545 mutex_lock(mmd_mutex);
546 strcpy(mmd->afs_mode_string, "dummy");
547 mutex_unlock(mmd_mutex);
548 current_mop = NULL;
549 }
550 }
551 return 1;
552 }
553
554 /**
555 * Result handler for sending data to the para_client process.
556 *
557 * \param result The data to be sent.
558 * \param band The band designator.
559 * \param private Pointer to the command context.
560 *
561 * \return The return value of the underlying call to \ref command.c::send_sb.
562 *
563 * \sa \ref callback_result_handler, \ref command.c::send_sb.
564 */
565 int afs_cb_result_handler(struct osl_object *result, uint8_t band,
566 void *private)
567 {
568 struct command_context *cc = private;
569
570 assert(cc);
571 if (!result->size)
572 return 1;
573 return send_sb(&cc->scc, result->data, result->size, band, true);
574 }
575
576 static void com_select_callback(int fd, const struct osl_object *query)
577 {
578 struct para_buffer pb = {
579 .max_size = shm_get_shmmax(),
580 .private_data = &(struct afs_max_size_handler_data) {
581 .fd = fd,
582 .band = SBD_OUTPUT
583 },
584 .max_size_handler = afs_max_size_handler,
585 };
586 char *arg = query->data;
587 int num_admissible, ret, ret2;
588
589 ret = clear_score_table();
590 if (ret < 0) {
591 ret2 = para_printf(&pb, "%s\n", para_strerror(-ret));
592 goto out;
593 }
594 if (current_play_mode == PLAY_MODE_MOOD)
595 close_current_mood();
596 else
597 playlist_close();
598 ret = activate_mood_or_playlist(arg, &num_admissible);
599 if (ret < 0) {
600 ret2 = para_printf(&pb, "%s\nswitching back to %s\n",
601 para_strerror(-ret), current_mop?
602 current_mop : "dummy");
603 ret = activate_mood_or_playlist(current_mop, &num_admissible);
604 if (ret < 0) {
605 if (ret2 >= 0)
606 ret2 = para_printf(&pb, "failed, switching to dummy\n");
607 activate_mood_or_playlist(NULL, &num_admissible);
608 }
609 } else
610 ret2 = para_printf(&pb, "activated %s (%d admissible files)\n",
611 current_mop? current_mop : "dummy mood",
612 num_admissible);
613 out:
614 if (ret2 >= 0 && pb.offset)
615 pass_buffer_as_shm(fd, SBD_OUTPUT, pb.buf, pb.offset);
616 free(pb.buf);
617 }
618
619 int com_select(struct command_context *cc)
620 {
621 struct osl_object query;
622
623 if (cc->argc != 2)
624 return -E_AFS_SYNTAX;
625 query.data = cc->argv[1];
626 query.size = strlen(cc->argv[1]) + 1;
627 return send_callback_request(com_select_callback, &query,
628 &afs_cb_result_handler, cc);
629 }
630
631 static void init_admissible_files(char *arg)
632 {
633 if (activate_mood_or_playlist(arg, NULL) < 0)
634 activate_mood_or_playlist(NULL, NULL); /* always successful */
635 }
636
637 static int setup_command_socket_or_die(void)
638 {
639 int ret, socket_fd;
640 char *socket_name = conf.afs_socket_arg;
641
642 unlink(socket_name);
643 ret = create_local_socket(socket_name, 0);
644 if (ret < 0) {
645 ret = create_local_socket(socket_name,
646 S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IWOTH);
647 if (ret < 0) {
648 PARA_EMERG_LOG("%s: %s\n", para_strerror(-ret),
649 socket_name);
650 exit(EXIT_FAILURE);
651 }
652 }
653 socket_fd = ret;
654 PARA_INFO_LOG("listening on socket %s (fd %d)\n", socket_name,
655 socket_fd);
656 return socket_fd;
657 }
658
659 static void close_afs_tables(void)
660 {
661 int i;
662 PARA_NOTICE_LOG("closing afs_tables\n");
663 for (i = 0; i < NUM_AFS_TABLES; i++)
664 afs_tables[i].close();
665 }
666
667 static char *database_dir;
668
669 static void get_database_dir(void)
670 {
671 if (!database_dir) {
672 if (conf.afs_database_dir_given)
673 database_dir = para_strdup(conf.afs_database_dir_arg);
674 else {
675 char *home = para_homedir();
676 database_dir = make_message(
677 "%s/.paraslash/afs_database-0.4", home);
678 free(home);
679 }
680 }
681 PARA_INFO_LOG("afs_database dir %s\n", database_dir);
682 }
683
684 static int make_database_dir(void)
685 {
686 int ret;
687
688 get_database_dir();
689 ret = para_mkdir(database_dir, 0777);
690 if (ret >= 0 || is_errno(-ret, EEXIST))
691 return 1;
692 return ret;
693 }
694
695 static int open_afs_tables(void)
696 {
697 int i, ret;
698
699 get_database_dir();
700 PARA_NOTICE_LOG("opening %u osl tables in %s\n", NUM_AFS_TABLES,
701 database_dir);
702 for (i = 0; i < NUM_AFS_TABLES; i++) {
703 ret = afs_tables[i].open(database_dir);
704 if (ret >= 0)
705 continue;
706 PARA_ERROR_LOG("%s init: %s\n", afs_tables[i].name,
707 para_strerror(-ret));
708 break;
709 }
710 if (ret >= 0)
711 return ret;
712 while (i)
713 afs_tables[--i].close();
714 return ret;
715 }
716
717 static int afs_signal_post_select(struct sched *s, __a_unused void *context)
718 {
719 int signum, ret;
720
721 if (getppid() == 1) {
722 PARA_EMERG_LOG("para_server died\n");
723 goto shutdown;
724 }
725 signum = para_next_signal(&s->rfds);
726 if (signum == 0)
727 return 0;
728 if (signum == SIGHUP) {
729 close_afs_tables();
730 parse_config_or_die(1);
731 ret = open_afs_tables();
732 if (ret < 0)
733 return ret;
734 init_admissible_files(current_mop);
735 return 0;
736 }
737 PARA_EMERG_LOG("terminating on signal %d\n", signum);
738 shutdown:
739 task_notify_all(s, E_AFS_SIGNAL);
740 return -E_AFS_SIGNAL;
741 }
742
743 static void register_signal_task(struct sched *s)
744 {
745 para_sigaction(SIGPIPE, SIG_IGN);
746 signal_task = signal_init_or_die();
747 para_install_sighandler(SIGINT);
748 para_install_sighandler(SIGTERM);
749 para_install_sighandler(SIGHUP);
750
751 signal_task->task = task_register(&(struct task_info) {
752 .name = "signal",
753 .pre_select = signal_pre_select,
754 .post_select = afs_signal_post_select,
755 .context = signal_task,
756
757 }, s);
758 }
759
760 static struct list_head afs_client_list;
761
762 /** Describes one connected afs client. */
763 struct afs_client {
764 /** Position in the afs client list. */
765 struct list_head node;
766 /** The socket file descriptor for this client. */
767 int fd;
768 /** The time the client connected. */
769 struct timeval connect_time;
770 };
771
772 static void command_pre_select(struct sched *s, void *context)
773 {
774 struct command_task *ct = context;
775 struct afs_client *client;
776
777 para_fd_set(server_socket, &s->rfds, &s->max_fileno);
778 para_fd_set(ct->fd, &s->rfds, &s->max_fileno);
779 list_for_each_entry(client, &afs_client_list, node)
780 para_fd_set(client->fd, &s->rfds, &s->max_fileno);
781 }
782
783 /**
784 * Send data as shared memory to a file descriptor.
785 *
786 * \param fd File descriptor to send the shmid to.
787 * \param band The band designator for this data.
788 * \param buf The buffer holding the data to be sent.
789 * \param size The size of \a buf.
790 *
791 * This function creates a shared memory area large enough to hold
792 * the content given by \a buf and \a size and sends the identifier
793 * of this area to the file descriptor \a fd.
794 *
795 * It is called by the AFS max_size handler as well as directly by the AFS
796 * command callbacks to send command output to the command handlers.
797 *
798 * \return Zero if \a buf is \p NULL or \a size is zero. Negative on errors,
799 * and positive on success.
800 */
801 int pass_buffer_as_shm(int fd, uint8_t band, const char *buf, size_t size)
802 {
803 int ret, shmid;
804 void *shm;
805 struct callback_result *cr;
806
807 if (!buf || !size)
808 return 0;
809 ret = shm_new(size + sizeof(*cr));
810 if (ret < 0)
811 return ret;
812 shmid = ret;
813 ret = shm_attach(shmid, ATTACH_RW, &shm);
814 if (ret < 0)
815 goto err;
816 cr = shm;
817 cr->result_size = size;
818 cr->band = band;
819 memcpy(shm + sizeof(*cr), buf, size);
820 ret = shm_detach(shm);
821 if (ret < 0)
822 goto err;
823 ret = write_all(fd, (char *)&shmid, sizeof(int));
824 if (ret >= 0)
825 return ret;
826 err:
827 if (shm_destroy(shmid) < 0)
828 PARA_ERROR_LOG("destroy result failed\n");
829 return ret;
830 }
831
832 /*
833 * On errors, negative value is written to fd.
834 * On success: If query produced a result, the result_shmid is written to fd.
835 * Otherwise, zero is written.
836 */
837 static int call_callback(int fd, int query_shmid)
838 {
839 void *query_shm;
840 struct callback_query *cq;
841 struct osl_object query;
842 int ret;
843
844 ret = shm_attach(query_shmid, ATTACH_RW, &query_shm);
845 if (ret < 0)
846 return ret;
847 cq = query_shm;
848 query.data = (char *)query_shm + sizeof(*cq);
849 query.size = cq->query_size;
850 cq->handler(fd, &query);
851 return shm_detach(query_shm);
852 }
853
854 static int execute_server_command(fd_set *rfds)
855 {
856 char buf[8];
857 size_t n;
858 int ret = read_nonblock(server_socket, buf, sizeof(buf) - 1, rfds, &n);
859
860 if (ret < 0 || n == 0)
861 return ret;
862 buf[n] = '\0';
863 if (strcmp(buf, "new"))
864 return -E_BAD_CMD;
865 return open_next_audio_file();
866 }
867
868 /* returns 0 if no data available, 1 else */
869 static int execute_afs_command(int fd, fd_set *rfds, uint32_t expected_cookie)
870 {
871 uint32_t cookie;
872 int query_shmid;
873 char buf[sizeof(cookie) + sizeof(query_shmid)];
874 size_t n;
875 int ret = read_nonblock(fd, buf, sizeof(buf), rfds, &n);
876
877 if (ret < 0)
878 goto err;
879 if (n == 0)
880 return 0;
881 if (n != sizeof(buf)) {
882 PARA_NOTICE_LOG("short read (%d bytes, expected %lu)\n",
883 ret, (long unsigned) sizeof(buf));
884 return 1;
885 }
886 cookie = *(uint32_t *)buf;
887 if (cookie != expected_cookie) {
888 PARA_NOTICE_LOG("received invalid cookie (got %u, expected %u)\n",
889 (unsigned)cookie, (unsigned)expected_cookie);
890 return 1;
891 }
892 query_shmid = *(int *)(buf + sizeof(cookie));
893 if (query_shmid < 0) {
894 PARA_WARNING_LOG("received invalid query shmid %d)\n",
895 query_shmid);
896 return 1;
897 }
898 ret = call_callback(fd, query_shmid);
899 if (ret >= 0)
900 return 1;
901 err:
902 PARA_NOTICE_LOG("%s\n", para_strerror(-ret));
903 return 1;
904 }
905
906 /** Shutdown connection if query has not arrived until this many seconds. */
907 #define AFS_CLIENT_TIMEOUT 3
908
909 static int command_post_select(struct sched *s, void *context)
910 {
911 struct command_task *ct = context;
912 struct sockaddr_un unix_addr;
913 struct afs_client *client, *tmp;
914 int fd, ret;
915
916 ret = task_get_notification(ct->task);
917 if (ret < 0)
918 return ret;
919 ret = execute_server_command(&s->rfds);
920 if (ret < 0) {
921 PARA_EMERG_LOG("%s\n", para_strerror(-ret));
922 task_notify_all(s, -ret);
923 return ret;
924 }
925 /* Check the list of connected clients. */
926 list_for_each_entry_safe(client, tmp, &afs_client_list, node) {
927 ret = execute_afs_command(client->fd, &s->rfds, ct->cookie);
928 if (ret == 0) { /* prevent bogus connection flooding */
929 struct timeval diff;
930 tv_diff(now, &client->connect_time, &diff);
931 if (diff.tv_sec < AFS_CLIENT_TIMEOUT)
932 continue;
933 PARA_WARNING_LOG("connection timeout\n");
934 }
935 close(client->fd);
936 list_del(&client->node);
937 free(client);
938 }
939 /* Accept connections on the local socket. */
940 ret = para_accept(ct->fd, &s->rfds, &unix_addr, sizeof(unix_addr), &fd);
941 if (ret < 0)
942 PARA_NOTICE_LOG("%s\n", para_strerror(-ret));
943 if (ret <= 0)
944 return 0;
945 ret = mark_fd_nonblocking(fd);
946 if (ret < 0) {
947 PARA_NOTICE_LOG("%s\n", para_strerror(-ret));
948 close(fd);
949 return 0;
950 }
951 client = para_malloc(sizeof(*client));
952 client->fd = fd;
953 client->connect_time = *now;
954 para_list_add(&client->node, &afs_client_list);
955 return 0;
956 }
957
958 static void register_command_task(uint32_t cookie, struct sched *s)
959 {
960 struct command_task *ct = &command_task_struct;
961 ct->fd = setup_command_socket_or_die();
962 ct->cookie = cookie;
963
964 ct->task = task_register(&(struct task_info) {
965 .name = "afs command",
966 .pre_select = command_pre_select,
967 .post_select = command_post_select,
968 .context = ct,
969 }, s);
970 }
971
972 /**
973 * Initialize the audio file selector process.
974 *
975 * \param cookie The value used for "authentication".
976 * \param socket_fd File descriptor used for communication with the server.
977 */
978 __noreturn void afs_init(uint32_t cookie, int socket_fd)
979 {
980 static struct sched s;
981 int i, ret;
982
983 register_signal_task(&s);
984 INIT_LIST_HEAD(&afs_client_list);
985 for (i = 0; i < NUM_AFS_TABLES; i++)
986 afs_tables[i].init(&afs_tables[i]);
987 ret = open_afs_tables();
988 if (ret < 0)
989 goto out;
990 server_socket = socket_fd;
991 ret = mark_fd_nonblocking(server_socket);
992 if (ret < 0)
993 goto out_close;
994 PARA_INFO_LOG("server_socket: %d, afs_socket_cookie: %u\n",
995 server_socket, (unsigned) cookie);
996 init_admissible_files(conf.afs_initial_mode_arg);
997 register_command_task(cookie, &s);
998 s.default_timeout.tv_sec = 0;
999 s.default_timeout.tv_usec = 999 * 1000;
1000 ret = schedule(&s);
1001 sched_shutdown(&s);
1002 out_close:
1003 close_afs_tables();
1004 out:
1005 if (ret < 0)
1006 PARA_EMERG_LOG("%s\n", para_strerror(-ret));
1007 exit(EXIT_FAILURE);
1008 }
1009
1010 static void create_tables_callback(int fd, const struct osl_object *query)
1011 {
1012 uint32_t table_mask = *(uint32_t *)query->data;
1013 int i, ret;
1014 struct para_buffer pb = {.buf = NULL};
1015
1016 close_afs_tables();
1017 for (i = 0; i < NUM_AFS_TABLES; i++) {
1018 struct afs_table *t = &afs_tables[i];
1019
1020 if (!(table_mask & (1 << i)))
1021 continue;
1022 if (!t->create)
1023 continue;
1024 ret = t->create(database_dir);
1025 if (ret < 0)
1026 goto out;
1027 para_printf(&pb, "successfully created %s table\n", t->name);
1028 }
1029 ret = open_afs_tables();
1030 out:
1031 if (ret < 0)
1032 para_printf(&pb, "%s\n", para_strerror(-ret));
1033 if (pb.buf)
1034 pass_buffer_as_shm(fd, SBD_OUTPUT, pb.buf, pb.offset);
1035 free(pb.buf);
1036 }
1037
1038 int com_init(struct command_context *cc)
1039 {
1040 int i, j, ret;
1041 uint32_t table_mask = (1 << (NUM_AFS_TABLES + 1)) - 1;
1042 struct osl_object query = {.data = &table_mask,
1043 .size = sizeof(table_mask)};
1044
1045 ret = make_database_dir();
1046 if (ret < 0)
1047 return ret;
1048 if (cc->argc != 1) {
1049 table_mask = 0;
1050 for (i = 1; i < cc->argc; i++) {
1051 for (j = 0; j < NUM_AFS_TABLES; j++) {
1052 struct afs_table *t = &afs_tables[j];
1053
1054 if (strcmp(cc->argv[i], t->name))
1055 continue;
1056 table_mask |= (1 << j);
1057 break;
1058 }
1059 if (j == NUM_AFS_TABLES)
1060 return -E_BAD_TABLE_NAME;
1061 }
1062 }
1063 ret = send_callback_request(create_tables_callback, &query,
1064 afs_cb_result_handler, cc);
1065 return ret;
1066 }
1067
1068 /**
1069 * Flags for the check command.
1070 *
1071 * \sa com_check().
1072 */
1073 enum com_check_flags {
1074 /** Check the audio file table. */
1075 CHECK_AFT = 1,
1076 /** Check the mood table. */
1077 CHECK_MOODS = 2,
1078 /** Check the playlist table. */
1079 CHECK_PLAYLISTS = 4
1080 };
1081
1082 int com_check(struct command_context *cc)
1083 {
1084 unsigned flags = 0;
1085 int i, ret;
1086
1087 for (i = 1; i < cc->argc; i++) {
1088 const char *arg = cc->argv[i];
1089 if (arg[0] != '-')
1090 break;
1091 if (!strcmp(arg, "--")) {
1092 i++;
1093 break;
1094 }
1095 if (!strcmp(arg, "-a")) {
1096 flags |= CHECK_AFT;
1097 continue;
1098 }
1099 if (!strcmp(arg, "-p")) {
1100 flags |= CHECK_PLAYLISTS;
1101 continue;
1102 }
1103 if (!strcmp(arg, "-m")) {
1104 flags |= CHECK_MOODS;
1105 continue;
1106 }
1107 return -E_AFS_SYNTAX;
1108 }
1109 if (i < cc->argc)
1110 return -E_AFS_SYNTAX;
1111 if (!flags)
1112 flags = ~0U;
1113 if (flags & CHECK_AFT) {
1114 ret = send_callback_request(aft_check_callback, NULL,
1115 afs_cb_result_handler, cc);
1116 if (ret < 0)
1117 return ret;
1118 }
1119 if (flags & CHECK_PLAYLISTS) {
1120 ret = send_callback_request(playlist_check_callback,
1121 NULL, afs_cb_result_handler, cc);
1122 if (ret < 0)
1123 return ret;
1124 }
1125 if (flags & CHECK_MOODS) {
1126 ret = send_callback_request(mood_check_callback, NULL,
1127 afs_cb_result_handler, cc);
1128 if (ret < 0)
1129 return ret;
1130 }
1131 return 1;
1132 }
1133
1134 /**
1135 * The afs event dispatcher.
1136 *
1137 * \param event Type of the event.
1138 * \param pb May be \p NULL.
1139 * \param data Type depends on \a event.
1140 *
1141 * This function calls the table handlers of all tables and passes \a pb and \a
1142 * data verbatim. It's up to the handlers to interpret the \a data pointer.
1143 */
1144 void afs_event(enum afs_events event, struct para_buffer *pb,
1145 void *data)
1146 {
1147 int i, ret;
1148
1149 for (i = 0; i < NUM_AFS_TABLES; i++) {
1150 struct afs_table *t = &afs_tables[i];
1151 if (!t->event_handler)
1152 continue;
1153 ret = t->event_handler(event, pb, data);
1154 if (ret < 0)
1155 PARA_CRIT_LOG("table %s, event %d: %s\n", t->name,
1156 event, para_strerror(-ret));
1157 }
1158 }
1159
1160 /**
1161 * Dummy event handler for the images table.
1162 *
1163 * \param event Unused.
1164 * \param pb Unused.
1165 * \param data Unused.
1166 *
1167 * \return The images table does not honor events, so this handler always
1168 * returns success.
1169 */
1170 __a_const int images_event_handler(__a_unused enum afs_events event,
1171 __a_unused struct para_buffer *pb, __a_unused void *data)
1172 {
1173 return 1;
1174 }
1175
1176 /**
1177 * Dummy event handler for the lyrics table.
1178 *
1179 * \param event Unused.
1180 * \param pb Unused.
1181 * \param data Unused.
1182 *
1183 * \return The lyrics table does not honor events, so this handler always
1184 * returns success.
1185 */
1186 __a_const int lyrics_event_handler(__a_unused enum afs_events event,
1187 __a_unused struct para_buffer *pb, __a_unused void *data)
1188 {
1189 return 1;
1190 }