2 * Copyright (C) 1997 Andre Noll <maan@tuebingen.mpg.de>
4 * Licensed under the GPL v2. For licencing details see COPYING.
7 /** \file vss.c The virtual streaming system.
9 * This contains the audio streaming code of para_server which is independent
10 * of the current audio format, audio file selector and of the activated
14 #include <sys/socket.h>
15 #include <netinet/in.h>
18 #include <sys/types.h>
19 #include <arpa/inet.h>
25 #include "portable_io.h"
32 #include "server.cmdline.h"
40 extern struct misc_meta_data
*mmd
;
42 extern void dccp_send_init(struct sender
*);
43 extern void http_send_init(struct sender
*);
44 extern void udp_send_init(struct sender
*);
46 /** The list of supported senders. */
47 struct sender senders
[] = {
50 .init
= http_send_init
,
54 .init
= dccp_send_init
,
58 .init
= udp_send_init
,
65 /** The possible states of the afs socket. */
66 enum afs_socket_status
{
67 /** Socket is inactive. */
69 /** Socket fd was included in the write fd set for select(). */
70 AFS_SOCKET_CHECK_FOR_WRITE
,
71 /** vss wrote a request to the socket and waits for reply from afs. */
72 AFS_SOCKET_AFD_PENDING
75 /** The task structure for the virtual streaming system. */
77 /** Copied from the -announce_time command line option. */
78 struct timeval announce_tv
;
79 /** End of the announcing interval. */
80 struct timeval data_send_barrier
;
81 /** End of the EOF interval. */
82 struct timeval eof_barrier
;
83 /** Only used if --autoplay_delay was given. */
84 struct timeval autoplay_barrier
;
85 /** Used for afs-server communication. */
87 /** The current state of \a afs_socket. */
88 enum afs_socket_status afsss
;
89 /** The memory mapped audio file. */
91 /** The size of the memory mapping. */
93 /** Used by the scheduler. */
95 /** Pointer to the header of the mapped audio file. */
97 /** Length of the audio file header. */
99 /** Time between audio file headers are sent. */
100 struct timeval header_interval
;
101 /* Only used if afh supports dynamic chunks. */
106 * The list of currently connected fec clients.
108 * Senders may use \ref vss_add_fec_client() to add entries to the list.
110 static struct list_head fec_client_list
;
113 * Data associated with one FEC group.
115 * A FEC group consists of a fixed number of slices and this number is given by
116 * the \a slices_per_group parameter of struct \ref fec_client_parms. Each FEC
117 * group contains a number of chunks of the current audio file.
119 * FEC slices directly correspond to the data packages sent by the paraslash
120 * senders that use FEC. Each slice is identified by its group number and its
121 * number within the group. All slices have the same size, but the last slice
122 * of the group may not be filled entirely.
125 /** The number of the FEC group. */
127 /** Number of bytes in this group. */
129 /** The first chunk of the current audio file belonging to the group. */
130 uint32_t first_chunk
;
131 /** The number of chunks contained in this group. */
133 /** When the first chunk was sent. */
134 struct timeval start
;
135 /** The duration of the full group. */
136 struct timeval duration
;
137 /** The group duration divided by the number of slices. */
138 struct timeval slice_duration
;
139 /** Group contains the audio file header that occupies that many slices. */
140 uint8_t num_header_slices
;
141 /** Number of bytes per slice for this group. */
142 uint16_t slice_bytes
;
145 /** A FEC client is always in one of these states. */
146 enum fec_client_state
{
147 FEC_STATE_NONE
= 0, /**< not initialized and not enabled */
148 FEC_STATE_DISABLED
, /**< temporarily disabled */
149 FEC_STATE_READY_TO_RUN
/**< initialized and enabled */
153 * Describes one connected FEC client.
156 /** Current state of the client */
157 enum fec_client_state state
;
158 /** The connected sender client (transport layer). */
159 struct sender_client
*sc
;
160 /** Parameters requested by the client. */
161 struct fec_client_parms
*fcp
;
162 /** Used by the core FEC code. */
163 struct fec_parms
*parms
;
164 /** The position of this client in the fec client list. */
165 struct list_head node
;
166 /** When the first slice for this client was sent. */
167 struct timeval stream_start
;
168 /** The first chunk sent to this FEC client. */
169 int first_stream_chunk
;
170 /** Describes the current group. */
171 struct fec_group group
;
172 /** The current slice. */
173 uint8_t current_slice_num
;
174 /** The data to be FEC-encoded (point to a region within the mapped audio file). */
175 const unsigned char **src_data
;
176 /** Last time an audio header was sent. */
177 struct timeval next_header_time
;
178 /** Used for the last source pointer of an audio file. */
179 unsigned char *extra_src_buf
;
180 /** Needed for the last slice of the audio file header. */
181 unsigned char *extra_header_buf
;
182 /** Extra slices needed to store largest chunk + header. */
183 int num_extra_slices
;
184 /** Contains the FEC-encoded data. */
185 unsigned char *enc_buf
;
186 /** Maximal packet size. */
191 * Get the chunk time of the current audio file.
193 * \return A pointer to a struct containing the chunk time, or NULL,
194 * if currently no audio file is selected.
196 struct timeval
*vss_chunk_time(void)
198 if (mmd
->afd
.afhi
.chunk_tv
.tv_sec
== 0 &&
199 mmd
->afd
.afhi
.chunk_tv
.tv_usec
== 0)
201 return &mmd
->afd
.afhi
.chunk_tv
;
205 * Write a fec header to a buffer.
207 * \param buf The buffer to write to.
208 * \param h The fec header to write.
210 static void write_fec_header(struct fec_client
*fc
, struct vss_task
*vsst
)
212 char *buf
= (char *)fc
->enc_buf
;
213 struct fec_group
*g
= &fc
->group
;
214 struct fec_client_parms
*p
= fc
->fcp
;
216 write_u32(buf
, FEC_MAGIC
);
218 write_u8(buf
+ 4, p
->slices_per_group
+ fc
->num_extra_slices
);
219 write_u8(buf
+ 5, p
->data_slices_per_group
+ fc
->num_extra_slices
);
220 write_u32(buf
+ 6, g
->num_header_slices
? vsst
->header_len
: 0);
222 write_u32(buf
+ 10, g
->num
);
223 write_u32(buf
+ 14, g
->bytes
);
225 write_u8(buf
+ 18, fc
->current_slice_num
);
226 write_u8(buf
+ 19, 0); /* unused */
227 write_u16(buf
+ 20, g
->slice_bytes
);
228 write_u8(buf
+ 22, g
->first_chunk
? 0 : 1);
229 write_u8(buf
+ 23, vsst
->header_len
? 1 : 0);
230 memset(buf
+ 24, 0, 8);
233 static bool need_audio_header(struct fec_client
*fc
, struct vss_task
*vsst
)
235 if (!mmd
->current_chunk
) {
236 tv_add(now
, &vsst
->header_interval
, &fc
->next_header_time
);
239 if (!vsst
->header_buf
)
241 if (vsst
->header_len
== 0)
243 if (fc
->group
.num
> 0) {
244 if (!fc
->fcp
->need_periodic_header
)
246 if (tv_diff(&fc
->next_header_time
, now
, NULL
) > 0)
249 tv_add(now
, &vsst
->header_interval
, &fc
->next_header_time
);
253 static bool need_data_slices(struct fec_client
*fc
, struct vss_task
*vsst
)
255 if (fc
->group
.num
> 0)
257 if (!vsst
->header_buf
)
259 if (vsst
->header_len
== 0)
261 if (fc
->fcp
->need_periodic_header
)
266 static int num_slices(long unsigned bytes
, int max_payload
, int rs
)
270 assert(max_payload
> 0);
272 ret
= DIV_ROUND_UP(bytes
, max_payload
);
278 /* set group start and group duration */
279 static void set_group_timing(struct fec_client
*fc
, struct vss_task
*vsst
)
281 struct fec_group
*g
= &fc
->group
;
282 struct timeval
*chunk_tv
= vss_chunk_time();
284 if (!need_data_slices(fc
, vsst
))
285 ms2tv(200, &g
->duration
);
287 tv_scale(g
->num_chunks
, chunk_tv
, &g
->duration
);
288 tv_divide(fc
->fcp
->slices_per_group
+ fc
->num_extra_slices
,
289 &g
->duration
, &g
->slice_duration
);
290 PARA_DEBUG_LOG("durations (group/chunk/slice): %lu/%lu/%lu\n",
291 tv2ms(&g
->duration
), tv2ms(chunk_tv
), tv2ms(&g
->slice_duration
));
294 static int initialize_fec_client(struct fec_client
*fc
, struct vss_task
*vsst
)
297 int hs
, ds
, rs
; /* header/data/redundant slices */
298 struct fec_client_parms
*fcp
= fc
->fcp
;
303 * Set the maximum slice size to the Maximum Packet Size if the
304 * transport protocol allows to determine this value. The user
305 * can specify a slice size up to this value.
307 ret
= fcp
->init_fec(fc
->sc
);
312 fc
->mps
= generic_max_transport_msg_size(fc
->sc
->fd
);
313 if (fc
->mps
<= FEC_HEADER_SIZE
)
314 return -ERRNO_TO_PARA_ERROR(EINVAL
);
316 rs
= fc
->fcp
->slices_per_group
- fc
->fcp
->data_slices_per_group
;
317 ret
= num_slices(vsst
->header_len
, fc
->mps
- FEC_HEADER_SIZE
, rs
);
321 ret
= num_slices(mmd
->afd
.max_chunk_size
, fc
->mps
- FEC_HEADER_SIZE
, rs
);
325 if (fc
->fcp
->need_periodic_header
)
328 k
= PARA_MAX(hs
, ds
);
329 if (k
< fc
->fcp
->data_slices_per_group
)
330 k
= fc
->fcp
->data_slices_per_group
;
331 fc
->num_extra_slices
= k
- fc
->fcp
->data_slices_per_group
;
334 ret
= fec_new(k
, n
, &fc
->parms
);
337 PARA_INFO_LOG("mps: %d, k: %d, n: %d, extra slices: %d\n",
338 fc
->mps
, k
, n
, fc
->num_extra_slices
);
339 fc
->src_data
= para_realloc(fc
->src_data
, k
* sizeof(char *));
340 fc
->enc_buf
= para_realloc(fc
->enc_buf
, fc
->mps
);
341 fc
->extra_src_buf
= para_realloc(fc
->extra_src_buf
, fc
->mps
);
342 fc
->extra_header_buf
= para_realloc(fc
->extra_header_buf
, fc
->mps
);
344 fc
->state
= FEC_STATE_READY_TO_RUN
;
345 fc
->next_header_time
.tv_sec
= 0;
346 fc
->stream_start
= *now
;
347 fc
->first_stream_chunk
= mmd
->current_chunk
;
351 static void vss_get_chunk(int chunk_num
, struct vss_task
*vsst
,
352 char **buf
, size_t *sz
)
357 * Chunk zero is special for header streams: It is the first portion of
358 * the audio file which consists of the audio file header. It may be
359 * arbitrary large due to embedded meta data. Audio format handlers may
360 * replace the header by a stripped one with meta data omitted which is
361 * of bounded size. We always use the stripped header for streaming
362 * rather than the unmodified header (chunk zero).
364 if (chunk_num
== 0 && vsst
->header_len
> 0) {
365 *buf
= vsst
->header_buf
; /* stripped header */
366 *sz
= vsst
->header_len
;
369 ret
= afh_get_chunk(chunk_num
, &mmd
->afd
.afhi
,
370 mmd
->afd
.audio_format_id
, vsst
->map
, vsst
->mapsize
,
371 (const char **)buf
, sz
, &vsst
->afh_context
);
373 PARA_WARNING_LOG("could not get chunk %d: %s\n",
374 chunk_num
, para_strerror(-ret
));
380 static void compute_group_size(struct vss_task
*vsst
, struct fec_group
*g
,
385 int i
, max_chunks
= PARA_MAX(1LU, 150 / tv2ms(vss_chunk_time()));
387 if (g
->first_chunk
== 0) {
389 vss_get_chunk(0, vsst
, &buf
, &len
);
397 * Include chunks into the group until the group duration is at least
398 * 150ms. For ogg and wma, a single chunk's duration (ogg page/wma
399 * super frame) is already larger than 150ms, so a FEC group consists
400 * of exactly one chunk for these audio formats.
403 int chunk_num
= g
->first_chunk
+ i
;
405 if (g
->bytes
> 0 && i
>= max_chunks
) /* duration limit */
407 if (chunk_num
>= mmd
->afd
.afhi
.chunks_total
) /* eof */
409 vss_get_chunk(chunk_num
, vsst
, &buf
, &len
);
410 if (g
->bytes
+ len
> max_bytes
)
412 /* Include this chunk */
416 assert(g
->num_chunks
);
420 * Compute the slice size of the next group.
422 * The FEC parameters n and k are fixed but the slice size varies per
423 * FEC group. We'd like to choose slices as small as possible to avoid
424 * unnecessary FEC calculations but large enough to guarantee that the
425 * k data slices suffice to encode the header (if needed) and the data
428 * Once we know the payload of the next group, we define the number s
429 * of bytes per slice for this group by
431 * s = ceil(payload / k)
433 * However, for header streams, computing s is more complicated since no
434 * overlapping of header and data slices is possible. Hence we have k >=
435 * 2 and s must satisfy
437 * (*) ceil(h / s) + ceil(d / s) <= k
439 * where h and d are payload of the header and the data chunk(s)
440 * respectively. In general there is no value for s such that (*)
441 * becomes an equality, for example if h = 4000, d = 5000 and k = 10.
443 * We use the following approach for computing a suitable value for s:
446 * k1 := ceil(k * min(h, d) / (h + d)),
449 * Note that k >= 2 implies k1 > 0 and k2 > 0, so
451 * s := max(ceil(min(h, d) / k1), ceil(max(h, d) / k2))
453 * is well-defined. Inequality (*) holds for this value of s since k1
454 * slices suffice to store min(h, d) while k2 slices suffice to store
455 * max(h, d), i.e. the first addent of (*) is bounded by k1 and the
458 * For the above example we obtain
460 * k1 = ceil(10 * 4000 / 9000) = 5, k2 = 5,
461 * s = max(4000 / 5, 5000 / 5) = 1000,
463 * which is optimal since a slice size of 999 bytes would already require
466 static int compute_slice_size(struct fec_client
*fc
, struct vss_task
*vsst
)
468 struct fec_group
*g
= &fc
->group
;
469 int k
= fc
->fcp
->data_slices_per_group
+ fc
->num_extra_slices
;
470 int n
= fc
->fcp
->slices_per_group
+ fc
->num_extra_slices
;
471 int ret
, k1
, k2
, h
, d
, min
, max
, sum
;
472 int max_slice_bytes
= fc
->mps
- FEC_HEADER_SIZE
;
475 if (!need_audio_header(fc
, vsst
)) {
476 max_group_bytes
= k
* max_slice_bytes
;
477 g
->num_header_slices
= 0;
478 compute_group_size(vsst
, g
, max_group_bytes
);
479 g
->slice_bytes
= DIV_ROUND_UP(g
->bytes
, k
);
480 if (g
->slice_bytes
== 0)
484 if (!need_data_slices(fc
, vsst
)) {
487 g
->slice_bytes
= DIV_ROUND_UP(vsst
->header_len
, k
);
488 g
->num_header_slices
= k
;
491 h
= vsst
->header_len
;
492 max_group_bytes
= (k
- num_slices(h
, max_slice_bytes
, n
- k
))
494 compute_group_size(vsst
, g
, max_group_bytes
);
497 g
->slice_bytes
= DIV_ROUND_UP(h
, k
);
498 ret
= num_slices(vsst
->header_len
, g
->slice_bytes
, n
- k
);
501 g
->num_header_slices
= ret
;
504 min
= PARA_MIN(h
, d
);
505 max
= PARA_MAX(h
, d
);
507 k1
= DIV_ROUND_UP(k
* min
, sum
);
512 g
->slice_bytes
= PARA_MAX(DIV_ROUND_UP(min
, k1
), DIV_ROUND_UP(max
, k2
));
514 * This value of s := g->slice_bytes satisfies inequality (*) above,
515 * but it might be larger than max_slice_bytes. However, we know that
516 * max_slice_bytes are sufficient to store header and data, so:
518 g
->slice_bytes
= PARA_MIN((int)g
->slice_bytes
, max_slice_bytes
);
520 ret
= num_slices(vsst
->header_len
, g
->slice_bytes
, n
- k
);
523 g
->num_header_slices
= ret
;
527 static int setup_next_fec_group(struct fec_client
*fc
, struct vss_task
*vsst
)
529 int ret
, i
, k
, n
, data_slices
;
532 struct fec_group
*g
= &fc
->group
;
534 if (fc
->state
== FEC_STATE_NONE
) {
535 ret
= initialize_fec_client(fc
, vsst
);
538 g
->first_chunk
= mmd
->current_chunk
;
543 if (g
->first_chunk
+ g
->num_chunks
>= mmd
->afd
.afhi
.chunks_total
)
546 * Start and duration of this group depend only on the previous
547 * group. Compute the new group start as g->start += g->duration.
550 tv_add(&tmp
, &g
->duration
, &g
->start
);
551 set_group_timing(fc
, vsst
);
552 g
->first_chunk
+= g
->num_chunks
;
555 k
= fc
->fcp
->data_slices_per_group
+ fc
->num_extra_slices
;
556 n
= fc
->fcp
->slices_per_group
+ fc
->num_extra_slices
;
558 compute_slice_size(fc
, vsst
);
559 assert(g
->slice_bytes
> 0);
560 ret
= num_slices(g
->bytes
, g
->slice_bytes
, n
- k
);
564 assert(g
->num_header_slices
+ data_slices
<= k
);
565 fc
->current_slice_num
= 0;
567 set_group_timing(fc
, vsst
);
568 /* setup header slices */
569 buf
= vsst
->header_buf
;
570 for (i
= 0; i
< g
->num_header_slices
; i
++) {
571 uint32_t payload_size
;
572 if (buf
+ g
->slice_bytes
<= vsst
->header_buf
+ vsst
->header_len
) {
573 fc
->src_data
[i
] = (const unsigned char *)buf
;
574 buf
+= g
->slice_bytes
;
578 * Can not use vss->header_buf for this slice as it
579 * goes beyond the buffer. This slice will not be fully
582 payload_size
= vsst
->header_buf
+ vsst
->header_len
- buf
;
583 memcpy(fc
->extra_header_buf
, buf
, payload_size
);
584 if (payload_size
< g
->slice_bytes
)
585 memset(fc
->extra_header_buf
+ payload_size
, 0,
586 g
->slice_bytes
- payload_size
);
588 * There might be more than one header slice to fill although
589 * only the first one will be used. Set all header slices to
592 while (i
< g
->num_header_slices
)
593 fc
->src_data
[i
++] = fc
->extra_header_buf
;
594 break; /* we don't want i to be increased. */
598 * Setup data slices. Note that for ogg streams chunk 0 points to a
599 * buffer on the heap rather than to the mapped audio file.
601 vss_get_chunk(g
->first_chunk
, vsst
, &buf
, &len
);
602 for (p
= buf
; i
< g
->num_header_slices
+ data_slices
; i
++) {
603 if (p
+ g
->slice_bytes
> buf
+ g
->bytes
) {
605 * We must make a copy for this slice since using p
606 * directly would exceed the buffer.
608 uint32_t payload_size
= buf
+ g
->bytes
- p
;
609 assert(payload_size
+ FEC_HEADER_SIZE
<= fc
->mps
);
610 memcpy(fc
->extra_src_buf
, p
, payload_size
);
611 if (payload_size
< g
->slice_bytes
)
612 memset(fc
->extra_src_buf
+ payload_size
, 0,
613 g
->slice_bytes
- payload_size
);
614 fc
->src_data
[i
] = fc
->extra_src_buf
;
618 fc
->src_data
[i
] = (const unsigned char *)p
;
622 /* use arbitrary data for all remaining slices */
625 fc
->src_data
[i
] = (const unsigned char *)buf
;
627 PARA_DEBUG_LOG("FEC group %u: %u chunks (%u - %u), %u bytes\n",
628 g
->num
, g
->num_chunks
, g
->first_chunk
,
629 g
->first_chunk
+ g
->num_chunks
- 1, g
->bytes
631 PARA_DEBUG_LOG("slice_bytes: %d, %d header slices, %d data slices\n",
632 g
->slice_bytes
, g
->num_header_slices
, data_slices
637 static int compute_next_fec_slice(struct fec_client
*fc
, struct vss_task
*vsst
)
639 if (fc
->state
== FEC_STATE_NONE
|| fc
->current_slice_num
640 == fc
->fcp
->slices_per_group
+ fc
->num_extra_slices
) {
641 int ret
= setup_next_fec_group(fc
, vsst
);
645 PARA_ERROR_LOG("%s\n", para_strerror(-ret
));
646 PARA_ERROR_LOG("FEC client temporarily disabled\n");
647 fc
->state
= FEC_STATE_DISABLED
;
651 write_fec_header(fc
, vsst
);
652 fec_encode(fc
->parms
, fc
->src_data
, fc
->enc_buf
+ FEC_HEADER_SIZE
,
653 fc
->current_slice_num
, fc
->group
.slice_bytes
);
658 * Return a buffer that marks the end of the stream.
660 * \param buf Result pointer.
661 * \return The length of the eof buffer.
663 * This is used for (multicast) udp streaming where closing the socket on the
664 * sender might not give rise to an eof condition at the peer.
666 size_t vss_get_fec_eof_packet(const char **buf
)
668 static const char fec_eof_packet
[FEC_HEADER_SIZE
] = FEC_EOF_PACKET
;
669 *buf
= fec_eof_packet
;
670 return FEC_HEADER_SIZE
;
674 * Add one entry to the list of active fec clients.
676 * \param sc Generic sender_client data of the transport layer.
677 * \param fcp FEC parameters as supplied by the transport layer.
679 * \return Newly allocated fec_client struct.
681 struct fec_client
*vss_add_fec_client(struct sender_client
*sc
,
682 struct fec_client_parms
*fcp
)
684 struct fec_client
*fc
= para_calloc(sizeof(*fc
));
688 para_list_add(&fc
->node
, &fec_client_list
);
693 * Remove one entry from the list of active fec clients.
695 * \param fc The client to be removed.
697 void vss_del_fec_client(struct fec_client
*fc
)
702 free(fc
->extra_src_buf
);
703 free(fc
->extra_header_buf
);
709 * Compute if/when next slice is due. If it isn't due yet and \a diff is
710 * not \p Null, compute the time difference next - now, where
712 * next = stream_start + (first_group_chunk - first_stream_chunk)
713 * * chunk_time + slice_num * slice_time
715 static int next_slice_is_due(struct fec_client
*fc
, struct timeval
*diff
)
717 struct timeval tmp
, next
;
720 if (fc
->state
== FEC_STATE_NONE
)
722 tv_scale(fc
->current_slice_num
, &fc
->group
.slice_duration
, &tmp
);
723 tv_add(&tmp
, &fc
->group
.start
, &next
);
724 ret
= tv_diff(&next
, now
, diff
);
725 return ret
< 0? 1 : 0;
728 static void set_eof_barrier(struct vss_task
*vsst
)
730 struct fec_client
*fc
;
731 struct timeval timeout
= {1, 0}, *chunk_tv
= vss_chunk_time();
735 list_for_each_entry(fc
, &fec_client_list
, node
) {
736 struct timeval group_duration
;
738 if (fc
->state
!= FEC_STATE_READY_TO_RUN
)
740 tv_scale(fc
->group
.num_chunks
, chunk_tv
, &group_duration
);
741 if (tv_diff(&timeout
, &group_duration
, NULL
) < 0)
742 timeout
= group_duration
;
745 tv_add(now
, &timeout
, &vsst
->eof_barrier
);
749 * Check if vss status flag \a P (playing) is set.
751 * \return Greater than zero if playing, zero otherwise.
754 unsigned int vss_playing(void)
756 return mmd
->new_vss_status_flags
& VSS_PLAYING
;
760 * Check if the \a N (next) status flag is set.
762 * \return Greater than zero if set, zero if not.
765 unsigned int vss_next(void)
767 return mmd
->new_vss_status_flags
& VSS_NEXT
;
771 * Check if a reposition request is pending.
773 * \return Greater than zero if true, zero otherwise.
776 unsigned int vss_repos(void)
778 return mmd
->new_vss_status_flags
& VSS_REPOS
;
782 * Check if the vss is currently paused.
784 * \return Greater than zero if paused, zero otherwise.
787 unsigned int vss_paused(void)
789 return !(mmd
->new_vss_status_flags
& VSS_NEXT
)
790 && !(mmd
->new_vss_status_flags
& VSS_PLAYING
);
794 * Check if the vss is currently stopped.
796 * \return Greater than zero if paused, zero otherwise.
799 unsigned int vss_stopped(void)
801 return (mmd
->new_vss_status_flags
& VSS_NEXT
)
802 && !(mmd
->new_vss_status_flags
& VSS_PLAYING
);
805 static int chk_barrier(const char *bname
, const struct timeval
*barrier
,
806 struct timeval
*diff
, int print_log
)
810 if (tv_diff(now
, barrier
, diff
) > 0)
814 PARA_DEBUG_LOG("%s barrier: %lims left\n", bname
, ms
);
818 static void vss_compute_timeout(struct sched
*s
, struct vss_task
*vsst
)
821 struct fec_client
*fc
;
823 if (!vss_playing() || !vsst
->map
)
825 if (vss_next() && vsst
->map
) /* only sleep a bit, nec*/
826 return sched_request_timeout_ms(100, s
);
828 /* Each of these barriers must have passed until we may proceed */
829 if (sched_request_barrier(&vsst
->autoplay_barrier
, s
) == 1)
831 if (sched_request_barrier(&vsst
->eof_barrier
, s
) == 1)
833 if (sched_request_barrier(&vsst
->data_send_barrier
, s
) == 1)
836 * Compute the select timeout as the minimal time until the next
837 * chunk/slice is due for any client.
839 compute_chunk_time(mmd
->chunks_sent
, &mmd
->afd
.afhi
.chunk_tv
,
840 &mmd
->stream_start
, &tv
);
841 if (sched_request_barrier_or_min_delay(&tv
, s
) == 0)
843 list_for_each_entry(fc
, &fec_client_list
, node
) {
844 if (fc
->state
!= FEC_STATE_READY_TO_RUN
)
846 if (next_slice_is_due(fc
, &tv
))
847 return sched_min_delay(s
);
848 sched_request_timeout(&tv
, s
);
852 static void vss_eof(struct vss_task
*vsst
)
857 if (mmd
->new_vss_status_flags
& VSS_NOMORE
)
858 mmd
->new_vss_status_flags
= VSS_NEXT
;
859 set_eof_barrier(vsst
);
860 afh_free_header(vsst
->header_buf
, mmd
->afd
.audio_format_id
);
861 vsst
->header_buf
= NULL
;
862 para_munmap(vsst
->map
, vsst
->mapsize
);
864 mmd
->chunks_sent
= 0;
866 mmd
->afd
.afhi
.seconds_total
= 0;
867 mmd
->afd
.afhi
.chunk_tv
.tv_sec
= 0;
868 mmd
->afd
.afhi
.chunk_tv
.tv_usec
= 0;
869 free(mmd
->afd
.afhi
.chunk_table
);
870 mmd
->afd
.afhi
.chunk_table
= NULL
;
872 afh_close(vsst
->afh_context
, mmd
->afd
.audio_format_id
);
873 vsst
->afh_context
= NULL
;
877 static int need_to_request_new_audio_file(struct vss_task
*vsst
)
881 if (vsst
->map
) /* have audio file */
883 if (!vss_playing()) /* don't need one */
885 if (mmd
->new_vss_status_flags
& VSS_NOMORE
)
887 if (vsst
->afsss
== AFS_SOCKET_AFD_PENDING
) /* already requested one */
889 if (chk_barrier("autoplay_delay", &vsst
->autoplay_barrier
,
895 static void set_mmd_offset(void)
897 struct timeval offset
;
898 tv_scale(mmd
->current_chunk
, &mmd
->afd
.afhi
.chunk_tv
, &offset
);
899 mmd
->offset
= tv2ms(&offset
);
902 static void vss_pre_select(struct sched
*s
, void *context
)
905 struct vss_task
*vsst
= context
;
907 if (need_to_request_new_audio_file(vsst
)) {
908 PARA_DEBUG_LOG("ready and playing, but no audio file\n");
909 para_fd_set(vsst
->afs_socket
, &s
->wfds
, &s
->max_fileno
);
910 vsst
->afsss
= AFS_SOCKET_CHECK_FOR_WRITE
;
912 para_fd_set(vsst
->afs_socket
, &s
->rfds
, &s
->max_fileno
);
913 for (i
= 0; senders
[i
].name
; i
++) {
914 if (!senders
[i
].pre_select
)
916 senders
[i
].pre_select(&s
->max_fileno
, &s
->rfds
, &s
->wfds
);
918 vss_compute_timeout(s
, vsst
);
921 static int recv_afs_msg(int afs_socket
, int *fd
, uint32_t *code
, uint32_t *data
)
923 char control
[255] __a_aligned(8), buf
[8];
924 struct msghdr msg
= {.msg_iov
= NULL
};
925 struct cmsghdr
*cmsg
;
931 iov
.iov_len
= sizeof(buf
);
934 msg
.msg_control
= control
;
935 msg
.msg_controllen
= sizeof(control
);
936 memset(buf
, 0, sizeof(buf
));
937 ret
= recvmsg(afs_socket
, &msg
, 0);
939 return -ERRNO_TO_PARA_ERROR(errno
);
940 if (iov
.iov_len
!= sizeof(buf
))
941 return -E_AFS_SHORT_READ
;
942 *code
= *(uint32_t*)buf
;
943 *data
= *(uint32_t*)(buf
+ 4);
944 for (cmsg
= CMSG_FIRSTHDR(&msg
); cmsg
; cmsg
= CMSG_NXTHDR(&msg
, cmsg
)) {
945 if (cmsg
->cmsg_level
!= SOL_SOCKET
946 || cmsg
->cmsg_type
!= SCM_RIGHTS
)
948 if ((cmsg
->cmsg_len
- CMSG_LEN(0)) / sizeof(int) != 1)
950 *fd
= *(int *)CMSG_DATA(cmsg
);
956 #define MAP_POPULATE 0
959 static void recv_afs_result(struct vss_task
*vsst
, fd_set
*rfds
)
961 int ret
, passed_fd
, shmid
;
962 uint32_t afs_code
= 0, afs_data
= 0;
965 if (!FD_ISSET(vsst
->afs_socket
, rfds
))
967 ret
= recv_afs_msg(vsst
->afs_socket
, &passed_fd
, &afs_code
, &afs_data
);
968 if (ret
== -ERRNO_TO_PARA_ERROR(EAGAIN
))
972 vsst
->afsss
= AFS_SOCKET_READY
;
973 PARA_DEBUG_LOG("fd: %d, code: %u, shmid: %u\n", passed_fd
, afs_code
,
976 if (afs_code
!= NEXT_AUDIO_FILE
)
981 ret
= load_afd(shmid
, &mmd
->afd
);
985 ret
= fstat(passed_fd
, &statbuf
);
987 PARA_ERROR_LOG("fstat error:\n");
988 ret
= -ERRNO_TO_PARA_ERROR(errno
);
991 ret
= para_mmap(statbuf
.st_size
, PROT_READ
, MAP_PRIVATE
| MAP_POPULATE
,
992 passed_fd
, 0, &vsst
->map
);
995 vsst
->mapsize
= statbuf
.st_size
;
997 mmd
->chunks_sent
= 0;
998 mmd
->current_chunk
= 0;
1002 mmd
->new_vss_status_flags
&= (~VSS_NEXT
);
1003 afh_get_header(&mmd
->afd
.afhi
, mmd
->afd
.audio_format_id
,
1004 vsst
->map
, vsst
->mapsize
, &vsst
->header_buf
, &vsst
->header_len
);
1007 free(mmd
->afd
.afhi
.chunk_table
);
1010 PARA_ERROR_LOG("%s\n", para_strerror(-ret
));
1011 mmd
->new_vss_status_flags
= VSS_NEXT
;
1015 * Main sending function.
1017 * This function gets called from vss_post_select(). It checks whether the next
1018 * chunk of data should be pushed out. It obtains a pointer to the data to be
1019 * sent out as well as its length from mmd->afd.afhi. This information is then
1020 * passed to each supported sender's send() function as well as to the send()
1021 * functions of each registered fec client.
1023 static void vss_send(struct vss_task
*vsst
)
1025 int i
, fec_active
= 0;
1027 struct fec_client
*fc
, *tmp_fc
;
1029 if (!vsst
->map
|| !vss_playing())
1031 if (chk_barrier("eof", &vsst
->eof_barrier
, &due
, 1) < 0)
1033 if (chk_barrier("data send", &vsst
->data_send_barrier
,
1036 list_for_each_entry_safe(fc
, tmp_fc
, &fec_client_list
, node
) {
1037 if (fc
->state
== FEC_STATE_DISABLED
)
1039 if (!next_slice_is_due(fc
, NULL
)) {
1043 if (compute_next_fec_slice(fc
, vsst
) <= 0)
1045 PARA_DEBUG_LOG("sending %u:%u (%u bytes)\n", fc
->group
.num
,
1046 fc
->current_slice_num
, fc
->group
.slice_bytes
);
1047 fc
->fcp
->send_fec(fc
->sc
, (char *)fc
->enc_buf
,
1048 fc
->group
.slice_bytes
+ FEC_HEADER_SIZE
);
1049 fc
->current_slice_num
++;
1052 if (mmd
->current_chunk
>= mmd
->afd
.afhi
.chunks_total
) { /* eof */
1054 mmd
->new_vss_status_flags
|= VSS_NEXT
;
1057 compute_chunk_time(mmd
->chunks_sent
, &mmd
->afd
.afhi
.chunk_tv
,
1058 &mmd
->stream_start
, &due
);
1059 if (tv_diff(&due
, now
, NULL
) <= 0) {
1063 if (!mmd
->chunks_sent
) {
1064 mmd
->stream_start
= *now
;
1069 * We call the send function also in case of empty chunks as
1070 * they might have still some data queued which can be sent in
1073 vss_get_chunk(mmd
->current_chunk
, vsst
, &buf
, &len
);
1074 for (i
= 0; senders
[i
].name
; i
++) {
1075 if (!senders
[i
].send
)
1077 senders
[i
].send(mmd
->current_chunk
, mmd
->chunks_sent
,
1078 buf
, len
, vsst
->header_buf
, vsst
->header_len
);
1081 * Prefault next chunk(s)
1083 * If the backing device of the memory-mapped audio file is
1084 * slow and read-ahead is turned off or prevented for some
1085 * reason, e.g. due to memory pressure, it may take much longer
1086 * than the chunk interval to get the next chunk on the wire,
1087 * causing buffer underruns on the client side. Mapping the
1088 * file with MAP_POPULATE seems to help a bit, but it does not
1089 * eliminate the delays completely. Moreover, it is supported
1090 * only on Linux. So we do our own read-ahead here.
1092 if (mmd
->current_chunk
> 0) { /* chunk 0 might be on the heap */
1094 for (i
= 0; i
< 5 && buf
< vsst
->map
+ vsst
->mapsize
; i
++) {
1095 __a_unused
volatile char x
= *buf
;
1100 mmd
->current_chunk
++;
1104 static int vss_post_select(struct sched
*s
, void *context
)
1107 struct vss_task
*vsst
= context
;
1109 if (!vsst
->map
|| vss_next() || vss_paused() || vss_repos()) {
1110 /* shut down senders and fec clients */
1111 struct fec_client
*fc
, *tmp
;
1112 for (i
= 0; senders
[i
].name
; i
++)
1113 if (senders
[i
].shutdown_clients
)
1114 senders
[i
].shutdown_clients();
1115 list_for_each_entry_safe(fc
, tmp
, &fec_client_list
, node
)
1116 fc
->state
= FEC_STATE_NONE
;
1117 mmd
->stream_start
.tv_sec
= 0;
1118 mmd
->stream_start
.tv_usec
= 0;
1122 else if (vss_paused()) {
1123 if (mmd
->chunks_sent
)
1124 set_eof_barrier(vsst
);
1125 mmd
->chunks_sent
= 0;
1126 } else if (vss_repos()) { /* repositioning due to ff/jmp command */
1127 tv_add(now
, &vsst
->announce_tv
, &vsst
->data_send_barrier
);
1128 set_eof_barrier(vsst
);
1129 mmd
->chunks_sent
= 0;
1130 mmd
->current_chunk
= afh_get_start_chunk(mmd
->repos_request
,
1131 &mmd
->afd
.afhi
, mmd
->afd
.audio_format_id
);
1132 mmd
->new_vss_status_flags
&= ~VSS_REPOS
;
1135 /* If a sender command is pending, run it. */
1136 if (mmd
->sender_cmd_data
.cmd_num
>= 0) {
1137 int num
= mmd
->sender_cmd_data
.cmd_num
,
1138 sender_num
= mmd
->sender_cmd_data
.sender_num
;
1140 if (senders
[sender_num
].client_cmds
[num
]) {
1141 ret
= senders
[sender_num
].client_cmds
[num
]
1142 (&mmd
->sender_cmd_data
);
1144 PARA_ERROR_LOG("%s\n", para_strerror(-ret
));
1146 mmd
->sender_cmd_data
.cmd_num
= -1;
1148 if (vsst
->afsss
!= AFS_SOCKET_CHECK_FOR_WRITE
)
1149 recv_afs_result(vsst
, &s
->rfds
);
1150 else if (FD_ISSET(vsst
->afs_socket
, &s
->wfds
)) {
1151 PARA_NOTICE_LOG("requesting new fd from afs\n");
1152 ret
= write_buffer(vsst
->afs_socket
, "new");
1154 PARA_CRIT_LOG("%s\n", para_strerror(-ret
));
1156 vsst
->afsss
= AFS_SOCKET_AFD_PENDING
;
1158 for (i
= 0; senders
[i
].name
; i
++) {
1159 if (!senders
[i
].post_select
)
1161 senders
[i
].post_select(&s
->rfds
, &s
->wfds
);
1163 if ((vss_playing() && !(mmd
->vss_status_flags
& VSS_PLAYING
)) ||
1164 (vss_next() && vss_playing()))
1165 tv_add(now
, &vsst
->announce_tv
, &vsst
->data_send_barrier
);
1171 * Initialize the virtual streaming system task.
1173 * \param afs_socket The fd for communication with afs.
1174 * \param s The scheduler to register the vss task to.
1176 * This also initializes all supported senders and starts streaming
1177 * if the --autoplay command line flag was given.
1179 void init_vss_task(int afs_socket
, struct sched
*s
)
1181 static struct vss_task vss_task_struct
, *vsst
= &vss_task_struct
;
1183 char *hn
= para_hostname(), *home
= para_homedir();
1184 long unsigned announce_time
= conf
.announce_time_arg
> 0?
1185 conf
.announce_time_arg
: 300,
1186 autoplay_delay
= conf
.autoplay_delay_arg
> 0?
1187 conf
.autoplay_delay_arg
: 0;
1188 vsst
->header_interval
.tv_sec
= 5; /* should this be configurable? */
1189 vsst
->afs_socket
= afs_socket
;
1190 ms2tv(announce_time
, &vsst
->announce_tv
);
1191 PARA_INFO_LOG("announce timeval: %lums\n", tv2ms(&vsst
->announce_tv
));
1192 INIT_LIST_HEAD(&fec_client_list
);
1193 for (i
= 0; senders
[i
].name
; i
++) {
1194 PARA_NOTICE_LOG("initializing %s sender\n", senders
[i
].name
);
1195 senders
[i
].init(&senders
[i
]);
1199 mmd
->sender_cmd_data
.cmd_num
= -1;
1200 if (conf
.autoplay_given
) {
1202 mmd
->vss_status_flags
|= VSS_PLAYING
;
1203 mmd
->new_vss_status_flags
|= VSS_PLAYING
;
1204 ms2tv(autoplay_delay
, &tmp
);
1205 tv_add(clock_get_realtime(NULL
), &tmp
, &vsst
->autoplay_barrier
);
1206 tv_add(&vsst
->autoplay_barrier
, &vsst
->announce_tv
,
1207 &vsst
->data_send_barrier
);
1209 vsst
->task
= task_register(&(struct task_info
) {
1211 .pre_select
= vss_pre_select
,
1212 .post_select
= vss_post_select
,