2 * WMA compatible decoder
4 * Extracted 2009 from the mplayer source code 2009-02-10.
6 * Copyright (c) 2002 The FFmpeg Project
8 * Licensed under the GNU Lesser General Public License.
9 * For licencing details see COPYING.LIB.
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
15 * This decoder handles Microsoft Windows Media Audio data version 2.
18 #define _XOPEN_SOURCE 600
26 #include <sys/select.h>
34 #include "buffer_tree.h"
36 #include "bitstream.h"
43 #define BLOCK_MIN_BITS 7
44 #define BLOCK_MAX_BITS 11
45 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
47 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
49 /* XXX: find exact max size */
50 #define HIGH_BAND_MAX_SIZE 16
52 /* XXX: is it a suitable value ? */
53 #define MAX_CODED_SUPERFRAME_SIZE 16384
55 #define MAX_CHANNELS 2
57 #define NOISE_TAB_SIZE 8192
59 #define LSP_POW_BITS 7
61 struct private_wmadec_data
{
62 /** Information contained in the audio file header. */
63 struct asf_header_info ahi
;
64 struct getbit_context gb
;
65 /** Whether to use the bit reservoir. */
66 int use_bit_reservoir
;
67 /** Whether to use variable block length. */
68 int use_variable_block_len
;
69 /** Whether to use exponent coding. */
71 /** Whether perceptual noise is added. */
73 /** Depends on number of the bits per second and the frame length. */
75 /** Only used if use_exp_vlc is true. */
77 uint16_t exponent_bands
[BLOCK_NB_SIZES
][25];
78 /** The index of the first coef in high band. */
79 int high_band_start
[BLOCK_NB_SIZES
];
80 /** Maximal number of coded coefficients. */
81 int coefs_end
[BLOCK_NB_SIZES
];
82 int exponent_high_sizes
[BLOCK_NB_SIZES
];
83 int exponent_high_bands
[BLOCK_NB_SIZES
][HIGH_BAND_MAX_SIZE
];
86 /* coded values in high bands */
87 int high_band_coded
[MAX_CHANNELS
][HIGH_BAND_MAX_SIZE
];
88 int high_band_values
[MAX_CHANNELS
][HIGH_BAND_MAX_SIZE
];
90 /* there are two possible tables for spectral coefficients */
91 struct vlc coef_vlc
[2];
92 uint16_t *run_table
[2];
93 uint16_t *level_table
[2];
94 const struct coef_vlc_table
*coef_vlcs
[2];
95 /** Frame length in samples. */
97 /** log2 of frame_len. */
99 /** Number of block sizes. */
102 int reset_block_lengths
;
103 /** log2 of current block length. */
105 /** log2 of next block length. */
106 int next_block_len_bits
;
107 /** log2 of previous block length. */
108 int prev_block_len_bits
;
109 /** Block length in samples. */
111 /** Current position in frame. */
113 /** True if mid/side stereo mode. */
115 /** True if channel is coded. */
116 uint8_t channel_coded
[MAX_CHANNELS
];
117 /** log2 ratio frame/exp. length. */
118 int exponents_bsize
[MAX_CHANNELS
];
120 float exponents
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
121 float max_exponent
[MAX_CHANNELS
];
122 int16_t coefs1
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
123 float coefs
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
124 float output
[BLOCK_MAX_SIZE
* 2];
125 struct mdct_context
*mdct_ctx
[BLOCK_NB_SIZES
];
126 float *windows
[BLOCK_NB_SIZES
];
127 /** Output buffer for one frame and the last for IMDCT windowing. */
128 float frame_out
[MAX_CHANNELS
][BLOCK_MAX_SIZE
* 2];
129 /** Last frame info. */
130 uint8_t last_superframe
[MAX_CODED_SUPERFRAME_SIZE
+ 4]; /* padding added */
132 int last_superframe_len
;
133 float noise_table
[NOISE_TAB_SIZE
];
135 float noise_mult
; /* XXX: suppress that and integrate it in the noise array */
136 /* lsp_to_curve tables */
137 float lsp_cos_table
[BLOCK_MAX_SIZE
];
138 float lsp_pow_e_table
[256];
139 float lsp_pow_m_table1
[(1 << LSP_POW_BITS
)];
140 float lsp_pow_m_table2
[(1 << LSP_POW_BITS
)];
144 #define EXPMAX DIV_ROUND_UP(19, EXPVLCBITS)
146 #define HGAINVLCBITS 9
147 #define HGAINMAX DIV_ROUND_UP(13, HGAINVLCBITS)
150 #define VLCMAX DIV_ROUND_UP(22, VLCBITS)
152 /** \cond sine_winows */
154 #define SINE_WINDOW(x) static float sine_ ## x[x] __a_aligned(16)
163 static float *sine_windows
[6] = {
164 sine_128
, sine_256
, sine_512
, sine_1024
, sine_2048
, sine_4096
166 /** \endcond sine_windows */
168 /* Generate a sine window. */
169 static void sine_window_init(float *window
, int n
)
173 for (i
= 0; i
< n
; i
++)
174 window
[i
] = sinf((i
+ 0.5) * (M_PI
/ (2.0 * n
)));
177 static void wmadec_cleanup(struct private_wmadec_data
*pwd
)
181 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++)
182 imdct_end(pwd
->mdct_ctx
[i
]);
183 if (pwd
->use_exp_vlc
)
184 free_vlc(&pwd
->exp_vlc
);
185 if (pwd
->use_noise_coding
)
186 free_vlc(&pwd
->hgain_vlc
);
187 for (i
= 0; i
< 2; i
++) {
188 free_vlc(&pwd
->coef_vlc
[i
]);
189 free(pwd
->run_table
[i
]);
190 free(pwd
->level_table
[i
]);
194 static void init_coef_vlc(struct vlc
*vlc
, uint16_t **prun_table
,
195 uint16_t **plevel_table
, const struct coef_vlc_table
*vlc_table
)
197 int n
= vlc_table
->n
;
198 const uint8_t *table_bits
= vlc_table
->huffbits
;
199 const uint32_t *table_codes
= vlc_table
->huffcodes
;
200 const uint16_t *levels_table
= vlc_table
->levels
;
201 uint16_t *run_table
, *level_table
;
202 int i
, l
, j
, k
, level
;
204 init_vlc(vlc
, VLCBITS
, n
, table_bits
, table_codes
, 4);
206 run_table
= para_malloc(n
* sizeof(uint16_t));
207 level_table
= para_malloc(n
* sizeof(uint16_t));
212 l
= levels_table
[k
++];
213 for (j
= 0; j
< l
; j
++) {
215 level_table
[i
] = level
;
220 *prun_table
= run_table
;
221 *plevel_table
= level_table
;
224 /* compute the scale factor band sizes for each MDCT block size */
225 static void compute_scale_factor_band_sizes(struct private_wmadec_data
*pwd
,
228 struct asf_header_info
*ahi
= &pwd
->ahi
;
229 int a
, b
, pos
, lpos
, k
, block_len
, i
, j
, n
;
230 const uint8_t *table
;
232 for (k
= 0; k
< pwd
->nb_block_sizes
; k
++) {
235 block_len
= pwd
->frame_len
>> k
;
237 a
= pwd
->frame_len_bits
- BLOCK_MIN_BITS
- k
;
239 if (ahi
->sample_rate
>= 44100)
240 table
= exponent_band_44100
[a
];
241 else if (ahi
->sample_rate
>= 32000)
242 table
= exponent_band_32000
[a
];
243 else if (ahi
->sample_rate
>= 22050)
244 table
= exponent_band_22050
[a
];
248 for (i
= 0; i
< n
; i
++)
249 pwd
->exponent_bands
[k
][i
] = table
[i
];
254 for (i
= 0; i
< 25; i
++) {
255 a
= wma_critical_freqs
[i
];
256 b
= ahi
->sample_rate
;
257 pos
= ((block_len
* 2 * a
) + (b
<< 1)) / (4 * b
);
262 pwd
->exponent_bands
[k
][j
++] = pos
- lpos
;
263 if (pos
>= block_len
)
270 /* max number of coefs */
271 pwd
->coefs_end
[k
] = (pwd
->frame_len
- ((pwd
->frame_len
* 9) / 100)) >> k
;
272 /* high freq computation */
273 pwd
->high_band_start
[k
] = (int) ((block_len
* 2 * high_freq
)
274 / ahi
->sample_rate
+ 0.5);
278 for (i
= 0; i
< n
; i
++) {
281 pos
+= pwd
->exponent_bands
[k
][i
];
283 if (start
< pwd
->high_band_start
[k
])
284 start
= pwd
->high_band_start
[k
];
285 if (end
> pwd
->coefs_end
[k
])
286 end
= pwd
->coefs_end
[k
];
288 pwd
->exponent_high_bands
[k
][j
++] = end
- start
;
290 pwd
->exponent_high_sizes
[k
] = j
;
294 static int wma_init(struct private_wmadec_data
*pwd
)
297 float bps1
, high_freq
;
301 struct asf_header_info
*ahi
= &pwd
->ahi
;
302 int flags2
= ahi
->flags2
;
304 if (ahi
->sample_rate
<= 0 || ahi
->sample_rate
> 50000
305 || ahi
->channels
<= 0 || ahi
->channels
> 8
306 || ahi
->bit_rate
<= 0)
307 return -E_WMA_BAD_PARAMS
;
309 /* compute MDCT block size */
310 if (ahi
->sample_rate
<= 16000)
311 pwd
->frame_len_bits
= 9;
312 else if (ahi
->sample_rate
<= 22050)
313 pwd
->frame_len_bits
= 10;
315 pwd
->frame_len_bits
= 11;
316 pwd
->frame_len
= 1 << pwd
->frame_len_bits
;
317 if (pwd
->use_variable_block_len
) {
319 nb
= ((flags2
>> 3) & 3) + 1;
320 if ((ahi
->bit_rate
/ ahi
->channels
) >= 32000)
322 nb_max
= pwd
->frame_len_bits
- BLOCK_MIN_BITS
;
325 pwd
->nb_block_sizes
= nb
+ 1;
327 pwd
->nb_block_sizes
= 1;
329 /* init rate dependent parameters */
330 pwd
->use_noise_coding
= 1;
331 high_freq
= ahi
->sample_rate
* 0.5;
333 /* wma2 rates are normalized */
334 sample_rate1
= ahi
->sample_rate
;
335 if (sample_rate1
>= 44100)
336 sample_rate1
= 44100;
337 else if (sample_rate1
>= 22050)
338 sample_rate1
= 22050;
339 else if (sample_rate1
>= 16000)
340 sample_rate1
= 16000;
341 else if (sample_rate1
>= 11025)
342 sample_rate1
= 11025;
343 else if (sample_rate1
>= 8000)
346 bps
= (float) ahi
->bit_rate
/ (float) (ahi
->channels
* ahi
->sample_rate
);
347 pwd
->byte_offset_bits
= wma_log2((int) (bps
* pwd
->frame_len
/ 8.0 + 0.5)) + 2;
349 * Compute high frequency value and choose if noise coding should be
353 if (ahi
->channels
== 2)
355 if (sample_rate1
== 44100) {
357 pwd
->use_noise_coding
= 0;
359 high_freq
= high_freq
* 0.4;
360 } else if (sample_rate1
== 22050) {
362 pwd
->use_noise_coding
= 0;
363 else if (bps1
>= 0.72)
364 high_freq
= high_freq
* 0.7;
366 high_freq
= high_freq
* 0.6;
367 } else if (sample_rate1
== 16000) {
369 high_freq
= high_freq
* 0.5;
371 high_freq
= high_freq
* 0.3;
372 } else if (sample_rate1
== 11025)
373 high_freq
= high_freq
* 0.7;
374 else if (sample_rate1
== 8000) {
376 high_freq
= high_freq
* 0.5;
378 pwd
->use_noise_coding
= 0;
380 high_freq
= high_freq
* 0.65;
383 high_freq
= high_freq
* 0.75;
385 high_freq
= high_freq
* 0.6;
387 high_freq
= high_freq
* 0.5;
389 PARA_INFO_LOG("channels=%d sample_rate=%d "
390 "bitrate=%d block_align=%d\n",
391 ahi
->channels
, ahi
->sample_rate
,
392 ahi
->bit_rate
, ahi
->block_align
);
393 PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
394 "high_freq=%f bitoffset=%d\n",
395 pwd
->frame_len
, bps
, bps1
,
396 high_freq
, pwd
->byte_offset_bits
);
397 PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
398 pwd
->use_noise_coding
, pwd
->use_exp_vlc
, pwd
->nb_block_sizes
);
400 compute_scale_factor_band_sizes(pwd
, high_freq
);
401 /* init MDCT windows : simple sinus window */
402 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++) {
404 n
= 1 << (pwd
->frame_len_bits
- i
);
405 sine_window_init(sine_windows
[pwd
->frame_len_bits
- i
- 7], n
);
406 pwd
->windows
[i
] = sine_windows
[pwd
->frame_len_bits
- i
- 7];
409 pwd
->reset_block_lengths
= 1;
411 if (pwd
->use_noise_coding
) {
412 /* init the noise generator */
413 if (pwd
->use_exp_vlc
)
414 pwd
->noise_mult
= 0.02;
416 pwd
->noise_mult
= 0.04;
422 norm
= (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd
->noise_mult
;
423 for (i
= 0; i
< NOISE_TAB_SIZE
; i
++) {
424 seed
= seed
* 314159 + 1;
425 pwd
->noise_table
[i
] = (float) ((int) seed
) * norm
;
430 /* choose the VLC tables for the coefficients */
432 if (ahi
->sample_rate
>= 32000) {
435 else if (bps1
< 1.16)
438 pwd
->coef_vlcs
[0] = &coef_vlcs
[coef_vlc_table
* 2];
439 pwd
->coef_vlcs
[1] = &coef_vlcs
[coef_vlc_table
* 2 + 1];
440 init_coef_vlc(&pwd
->coef_vlc
[0], &pwd
->run_table
[0], &pwd
->level_table
[0],
442 init_coef_vlc(&pwd
->coef_vlc
[1], &pwd
->run_table
[1], &pwd
->level_table
[1],
447 static void wma_lsp_to_curve_init(struct private_wmadec_data
*pwd
, int frame_len
)
452 wdel
= M_PI
/ frame_len
;
453 for (i
= 0; i
< frame_len
; i
++)
454 pwd
->lsp_cos_table
[i
] = 2.0f
* cos(wdel
* i
);
456 /* tables for x^-0.25 computation */
457 for (i
= 0; i
< 256; i
++) {
459 pwd
->lsp_pow_e_table
[i
] = pow(2.0, e
* -0.25);
462 /* These two tables are needed to avoid two operations in pow_m1_4. */
464 for (i
= (1 << LSP_POW_BITS
) - 1; i
>= 0; i
--) {
465 m
= (1 << LSP_POW_BITS
) + i
;
466 a
= (float) m
*(0.5 / (1 << LSP_POW_BITS
));
468 pwd
->lsp_pow_m_table1
[i
] = 2 * a
- b
;
469 pwd
->lsp_pow_m_table2
[i
] = b
- a
;
474 static int wma_decode_init(char *initial_buf
, int len
, struct private_wmadec_data
**result
)
476 struct private_wmadec_data
*pwd
;
479 PARA_NOTICE_LOG("initial buf: %d bytes\n", len
);
480 pwd
= para_calloc(sizeof(*pwd
));
481 ret
= read_asf_header(initial_buf
, len
, &pwd
->ahi
);
487 pwd
->use_exp_vlc
= pwd
->ahi
.flags2
& 0x0001;
488 pwd
->use_bit_reservoir
= pwd
->ahi
.flags2
& 0x0002;
489 pwd
->use_variable_block_len
= pwd
->ahi
.flags2
& 0x0004;
495 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++) {
496 ret
= imdct_init(pwd
->frame_len_bits
- i
+ 1, &pwd
->mdct_ctx
[i
]);
500 if (pwd
->use_noise_coding
) {
501 PARA_INFO_LOG("using noise coding\n");
502 init_vlc(&pwd
->hgain_vlc
, HGAINVLCBITS
,
503 sizeof(wma_hgain_huffbits
), wma_hgain_huffbits
,
504 wma_hgain_huffcodes
, 2);
507 if (pwd
->use_exp_vlc
) {
508 PARA_INFO_LOG("using exp_vlc\n");
509 init_vlc(&pwd
->exp_vlc
, EXPVLCBITS
, sizeof(wma_scale_huffbits
),
510 wma_scale_huffbits
, wma_scale_huffcodes
, 4);
512 PARA_INFO_LOG("using curve\n");
513 wma_lsp_to_curve_init(pwd
, pwd
->frame_len
);
516 return pwd
->ahi
.header_len
;
520 * compute x^-0.25 with an exponent and mantissa table. We use linear
521 * interpolation to reduce the mantissa table size at a small speed
522 * expense (linear interpolation approximately doubles the number of
523 * bits of precision).
525 static inline float pow_m1_4(struct private_wmadec_data
*pwd
, float x
)
536 m
= (u
.v
>> (23 - LSP_POW_BITS
)) & ((1 << LSP_POW_BITS
) - 1);
537 /* build interpolation scale: 1 <= t < 2. */
538 t
.v
= ((u
.v
<< LSP_POW_BITS
) & ((1 << 23) - 1)) | (127 << 23);
539 a
= pwd
->lsp_pow_m_table1
[m
];
540 b
= pwd
->lsp_pow_m_table2
[m
];
541 return pwd
->lsp_pow_e_table
[e
] * (a
+ b
* t
.f
);
544 static void wma_lsp_to_curve(struct private_wmadec_data
*pwd
,
545 float *out
, float *val_max_ptr
, int n
, float *lsp
)
548 float p
, q
, w
, v
, val_max
;
551 for (i
= 0; i
< n
; i
++) {
554 w
= pwd
->lsp_cos_table
[i
];
555 for (j
= 1; j
< NB_LSP_COEFS
; j
+= 2) {
562 v
= pow_m1_4(pwd
, v
);
567 *val_max_ptr
= val_max
;
570 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
571 static void decode_exp_lsp(struct private_wmadec_data
*pwd
, int ch
)
573 float lsp_coefs
[NB_LSP_COEFS
];
576 for (i
= 0; i
< NB_LSP_COEFS
; i
++) {
577 if (i
== 0 || i
>= 8)
578 val
= get_bits(&pwd
->gb
, 3);
580 val
= get_bits(&pwd
->gb
, 4);
581 lsp_coefs
[i
] = wma_lsp_codebook
[i
][val
];
584 wma_lsp_to_curve(pwd
, pwd
->exponents
[ch
], &pwd
->max_exponent
[ch
],
585 pwd
->block_len
, lsp_coefs
);
588 /* Decode exponents coded with VLC codes. */
589 static int decode_exp_vlc(struct private_wmadec_data
*pwd
, int ch
)
591 int last_exp
, n
, code
;
592 const uint16_t *ptr
, *band_ptr
;
593 float v
, *q
, max_scale
, *q_end
;
595 band_ptr
= pwd
->exponent_bands
[pwd
->frame_len_bits
- pwd
->block_len_bits
];
597 q
= pwd
->exponents
[ch
];
598 q_end
= q
+ pwd
->block_len
;
603 code
= get_vlc(&pwd
->gb
, pwd
->exp_vlc
.table
, EXPVLCBITS
, EXPMAX
);
606 /* NOTE: this offset is the same as MPEG4 AAC ! */
607 last_exp
+= code
- 60;
608 /* XXX: use a table */
609 v
= pow(10, last_exp
* (1.0 / 16.0));
617 pwd
->max_exponent
[ch
] = max_scale
;
621 /* compute src0 * src1 + src2 */
622 static inline void vector_mult_add(float *dst
, const float *src0
, const float *src1
,
623 const float *src2
, int len
)
627 for (i
= 0; i
< len
; i
++)
628 dst
[i
] = src0
[i
] * src1
[i
] + src2
[i
];
631 static inline void vector_mult_reverse(float *dst
, const float *src0
,
632 const float *src1
, int len
)
637 for (i
= 0; i
< len
; i
++)
638 dst
[i
] = src0
[i
] * src1
[-i
];
642 * Apply MDCT window and add into output.
644 * We ensure that when the windows overlap their squared sum
645 * is always 1 (MDCT reconstruction rule).
647 static void wma_window(struct private_wmadec_data
*pwd
, float *out
)
649 float *in
= pwd
->output
;
650 int block_len
, bsize
, n
;
653 if (pwd
->block_len_bits
<= pwd
->prev_block_len_bits
) {
654 block_len
= pwd
->block_len
;
655 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
656 vector_mult_add(out
, in
, pwd
->windows
[bsize
], out
, block_len
);
658 block_len
= 1 << pwd
->prev_block_len_bits
;
659 n
= (pwd
->block_len
- block_len
) / 2;
660 bsize
= pwd
->frame_len_bits
- pwd
->prev_block_len_bits
;
661 vector_mult_add(out
+ n
, in
+ n
, pwd
->windows
[bsize
], out
+ n
,
663 memcpy(out
+ n
+ block_len
, in
+ n
+ block_len
,
666 out
+= pwd
->block_len
;
667 in
+= pwd
->block_len
;
669 if (pwd
->block_len_bits
<= pwd
->next_block_len_bits
) {
670 block_len
= pwd
->block_len
;
671 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
672 vector_mult_reverse(out
, in
, pwd
->windows
[bsize
], block_len
);
674 block_len
= 1 << pwd
->next_block_len_bits
;
675 n
= (pwd
->block_len
- block_len
) / 2;
676 bsize
= pwd
->frame_len_bits
- pwd
->next_block_len_bits
;
677 memcpy(out
, in
, n
* sizeof(float));
678 vector_mult_reverse(out
+ n
, in
+ n
, pwd
->windows
[bsize
],
680 memset(out
+ n
+ block_len
, 0, n
* sizeof(float));
684 static int wma_total_gain_to_bits(int total_gain
)
688 else if (total_gain
< 32)
690 else if (total_gain
< 40)
692 else if (total_gain
< 45)
698 static int compute_high_band_values(struct private_wmadec_data
*pwd
,
699 int bsize
, int nb_coefs
[MAX_CHANNELS
])
703 if (!pwd
->use_noise_coding
)
705 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
707 if (!pwd
->channel_coded
[ch
])
709 m
= pwd
->exponent_high_sizes
[bsize
];
710 for (i
= 0; i
< m
; i
++) {
711 a
= get_bit(&pwd
->gb
);
712 pwd
->high_band_coded
[ch
][i
] = a
;
715 nb_coefs
[ch
] -= pwd
->exponent_high_bands
[bsize
][i
];
718 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
720 if (!pwd
->channel_coded
[ch
])
722 n
= pwd
->exponent_high_sizes
[bsize
];
723 val
= (int)0x80000000;
724 for (i
= 0; i
< n
; i
++) {
725 if (!pwd
->high_band_coded
[ch
][i
])
727 if (val
== (int)0x80000000)
728 val
= get_bits(&pwd
->gb
, 7) - 19;
730 int code
= get_vlc(&pwd
->gb
,
731 pwd
->hgain_vlc
.table
, HGAINVLCBITS
,
737 pwd
->high_band_values
[ch
][i
] = val
;
743 static void compute_mdct_coefficients(struct private_wmadec_data
*pwd
,
744 int bsize
, int total_gain
, int nb_coefs
[MAX_CHANNELS
])
747 float mdct_norm
= 1.0 / (pwd
->block_len
/ 2);
749 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
751 float *coefs
, *exponents
, mult
, mult1
, noise
;
752 int i
, j
, n
, n1
, last_high_band
, esize
;
753 float exp_power
[HIGH_BAND_MAX_SIZE
];
755 if (!pwd
->channel_coded
[ch
])
757 coefs1
= pwd
->coefs1
[ch
];
758 exponents
= pwd
->exponents
[ch
];
759 esize
= pwd
->exponents_bsize
[ch
];
760 mult
= pow(10, total_gain
* 0.05) / pwd
->max_exponent
[ch
];
762 coefs
= pwd
->coefs
[ch
];
763 if (!pwd
->use_noise_coding
) {
764 /* XXX: optimize more */
766 for (i
= 0; i
< n
; i
++)
767 *coefs
++ = coefs1
[i
] *
768 exponents
[i
<< bsize
>> esize
] * mult
;
769 n
= pwd
->block_len
- pwd
->coefs_end
[bsize
];
770 for (i
= 0; i
< n
; i
++)
774 n1
= pwd
->exponent_high_sizes
[bsize
];
775 /* compute power of high bands */
776 exponents
= pwd
->exponents
[ch
] +
777 (pwd
->high_band_start
[bsize
] << bsize
);
778 last_high_band
= 0; /* avoid warning */
779 for (j
= 0; j
< n1
; j
++) {
780 n
= pwd
->exponent_high_bands
[
781 pwd
->frame_len_bits
- pwd
->block_len_bits
][j
];
782 if (pwd
->high_band_coded
[ch
][j
]) {
785 for (i
= 0; i
< n
; i
++) {
786 val
= exponents
[i
<< bsize
>> esize
];
789 exp_power
[j
] = e2
/ n
;
792 exponents
+= n
<< bsize
;
794 /* main freqs and high freqs */
795 exponents
= pwd
->exponents
[ch
];
796 for (j
= -1; j
< n1
; j
++) {
798 n
= pwd
->high_band_start
[bsize
];
800 n
= pwd
->exponent_high_bands
[pwd
->frame_len_bits
801 - pwd
->block_len_bits
][j
];
802 if (j
>= 0 && pwd
->high_band_coded
[ch
][j
]) {
803 /* use noise with specified power */
804 mult1
= sqrt(exp_power
[j
]
805 / exp_power
[last_high_band
]);
806 /* XXX: use a table */
807 mult1
*= pow(10, pwd
->high_band_values
[ch
][j
] * 0.05);
808 mult1
/= (pwd
->max_exponent
[ch
] * pwd
->noise_mult
);
810 for (i
= 0; i
< n
; i
++) {
811 noise
= pwd
->noise_table
[pwd
->noise_index
];
812 pwd
->noise_index
= (pwd
->noise_index
+ 1)
813 & (NOISE_TAB_SIZE
- 1);
814 *coefs
++ = noise
* exponents
[
815 i
<< bsize
>> esize
] * mult1
;
817 exponents
+= n
<< bsize
;
819 /* coded values + small noise */
820 for (i
= 0; i
< n
; i
++) {
821 noise
= pwd
->noise_table
[pwd
->noise_index
];
822 pwd
->noise_index
= (pwd
->noise_index
+ 1)
823 & (NOISE_TAB_SIZE
- 1);
824 *coefs
++ = ((*coefs1
++) + noise
) *
825 exponents
[i
<< bsize
>> esize
]
828 exponents
+= n
<< bsize
;
831 /* very high freqs: noise */
832 n
= pwd
->block_len
- pwd
->coefs_end
[bsize
];
833 mult1
= mult
* exponents
[((-1 << bsize
)) >> esize
];
834 for (i
= 0; i
< n
; i
++) {
835 *coefs
++ = pwd
->noise_table
[pwd
->noise_index
] * mult1
;
836 pwd
->noise_index
= (pwd
->noise_index
+ 1)
837 & (NOISE_TAB_SIZE
- 1);
843 * Returns 0 if OK, 1 if last block of frame, negative on uncorrectable
846 static int wma_decode_block(struct private_wmadec_data
*pwd
)
848 int ret
, n
, v
, ch
, code
, bsize
;
849 int coef_nb_bits
, total_gain
;
850 int nb_coefs
[MAX_CHANNELS
];
852 /* compute current block length */
853 if (pwd
->use_variable_block_len
) {
854 n
= wma_log2(pwd
->nb_block_sizes
- 1) + 1;
856 if (pwd
->reset_block_lengths
) {
857 pwd
->reset_block_lengths
= 0;
858 v
= get_bits(&pwd
->gb
, n
);
859 if (v
>= pwd
->nb_block_sizes
)
860 return -E_WMA_BLOCK_SIZE
;
861 pwd
->prev_block_len_bits
= pwd
->frame_len_bits
- v
;
862 v
= get_bits(&pwd
->gb
, n
);
863 if (v
>= pwd
->nb_block_sizes
)
864 return -E_WMA_BLOCK_SIZE
;
865 pwd
->block_len_bits
= pwd
->frame_len_bits
- v
;
867 /* update block lengths */
868 pwd
->prev_block_len_bits
= pwd
->block_len_bits
;
869 pwd
->block_len_bits
= pwd
->next_block_len_bits
;
871 v
= get_bits(&pwd
->gb
, n
);
872 if (v
>= pwd
->nb_block_sizes
)
873 return -E_WMA_BLOCK_SIZE
;
874 pwd
->next_block_len_bits
= pwd
->frame_len_bits
- v
;
876 /* fixed block len */
877 pwd
->next_block_len_bits
= pwd
->frame_len_bits
;
878 pwd
->prev_block_len_bits
= pwd
->frame_len_bits
;
879 pwd
->block_len_bits
= pwd
->frame_len_bits
;
882 /* now check if the block length is coherent with the frame length */
883 pwd
->block_len
= 1 << pwd
->block_len_bits
;
884 if ((pwd
->block_pos
+ pwd
->block_len
) > pwd
->frame_len
)
885 return -E_INCOHERENT_BLOCK_LEN
;
887 if (pwd
->ahi
.channels
== 2)
888 pwd
->ms_stereo
= get_bit(&pwd
->gb
);
890 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
891 int a
= get_bit(&pwd
->gb
);
892 pwd
->channel_coded
[ch
] = a
;
896 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
898 /* if no channel coded, no need to go further */
899 /* XXX: fix potential framing problems */
904 * Read total gain and extract corresponding number of bits for coef
909 int a
= get_bits(&pwd
->gb
, 7);
915 coef_nb_bits
= wma_total_gain_to_bits(total_gain
);
917 /* compute number of coefficients */
918 n
= pwd
->coefs_end
[bsize
];
919 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++)
922 ret
= compute_high_band_values(pwd
, bsize
, nb_coefs
);
926 /* exponents can be reused in short blocks. */
927 if ((pwd
->block_len_bits
== pwd
->frame_len_bits
) || get_bit(&pwd
->gb
)) {
928 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
929 if (pwd
->channel_coded
[ch
]) {
930 if (pwd
->use_exp_vlc
) {
931 ret
= decode_exp_vlc(pwd
, ch
);
935 decode_exp_lsp(pwd
, ch
);
936 pwd
->exponents_bsize
[ch
] = bsize
;
941 /* parse spectral coefficients : just RLE encoding */
942 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
943 struct vlc
*coef_vlc
;
944 int level
, run
, tindex
;
946 const uint16_t *level_table
, *run_table
;
948 if (!pwd
->channel_coded
[ch
])
951 * special VLC tables are used for ms stereo because there is
952 * potentially less energy there
954 tindex
= (ch
== 1 && pwd
->ms_stereo
);
955 coef_vlc
= &pwd
->coef_vlc
[tindex
];
956 run_table
= pwd
->run_table
[tindex
];
957 level_table
= pwd
->level_table
[tindex
];
959 ptr
= &pwd
->coefs1
[ch
][0];
960 eptr
= ptr
+ nb_coefs
[ch
];
961 memset(ptr
, 0, pwd
->block_len
* sizeof(int16_t));
963 code
= get_vlc(&pwd
->gb
, coef_vlc
->table
,
967 if (code
== 1) /* EOB */
969 if (code
== 0) { /* escape */
970 level
= get_bits(&pwd
->gb
, coef_nb_bits
);
971 /* reading block_len_bits would be better */
972 run
= get_bits(&pwd
->gb
, pwd
->frame_len_bits
);
973 } else { /* normal code */
974 run
= run_table
[code
];
975 level
= level_table
[code
];
977 if (!get_bit(&pwd
->gb
))
981 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
985 if (ptr
>= eptr
) /* EOB can be omitted */
989 compute_mdct_coefficients(pwd
, bsize
, total_gain
, nb_coefs
);
990 if (pwd
->ms_stereo
&& pwd
->channel_coded
[1]) {
994 * Nominal case for ms stereo: we do it before mdct.
996 * No need to optimize this case because it should almost never
999 if (!pwd
->channel_coded
[0]) {
1000 PARA_NOTICE_LOG("rare ms-stereo\n");
1001 memset(pwd
->coefs
[0], 0, sizeof(float) * pwd
->block_len
);
1002 pwd
->channel_coded
[0] = 1;
1004 for (i
= 0; i
< pwd
->block_len
; i
++) {
1005 a
= pwd
->coefs
[0][i
];
1006 b
= pwd
->coefs
[1][i
];
1007 pwd
->coefs
[0][i
] = a
+ b
;
1008 pwd
->coefs
[1][i
] = a
- b
;
1012 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
1015 n4
= pwd
->block_len
/ 2;
1016 if (pwd
->channel_coded
[ch
])
1017 imdct(pwd
->mdct_ctx
[bsize
], pwd
->output
, pwd
->coefs
[ch
]);
1018 else if (!(pwd
->ms_stereo
&& ch
== 1))
1019 memset(pwd
->output
, 0, sizeof(pwd
->output
));
1021 /* multiply by the window and add in the frame */
1022 idx
= (pwd
->frame_len
/ 2) + pwd
->block_pos
- n4
;
1023 wma_window(pwd
, &pwd
->frame_out
[ch
][idx
]);
1026 /* update block number */
1027 pwd
->block_pos
+= pwd
->block_len
;
1028 if (pwd
->block_pos
>= pwd
->frame_len
)
1035 * Clip a signed integer value into the -32768,32767 range.
1037 * \param a The value to clip.
1039 * \return The clipped value.
1041 static inline int16_t av_clip_int16(int a
)
1043 if ((a
+ 32768) & ~65535)
1044 return (a
>> 31) ^ 32767;
1049 /* Decode a frame of frame_len samples. */
1050 static int wma_decode_frame(struct private_wmadec_data
*pwd
, int16_t *samples
)
1052 int ret
, i
, n
, ch
, incr
;
1056 /* read each block */
1059 ret
= wma_decode_block(pwd
);
1066 /* convert frame to integer */
1068 incr
= pwd
->ahi
.channels
;
1069 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
1071 iptr
= pwd
->frame_out
[ch
];
1073 for (i
= 0; i
< n
; i
++) {
1074 *ptr
= av_clip_int16(lrintf(*iptr
++));
1077 /* prepare for next block */
1078 memmove(&pwd
->frame_out
[ch
][0], &pwd
->frame_out
[ch
][pwd
->frame_len
],
1079 pwd
->frame_len
* sizeof(float));
1084 static int wma_decode_superframe(struct private_wmadec_data
*pwd
, void *data
,
1085 int *data_size
, const uint8_t *buf
, int buf_size
)
1090 if (buf_size
== 0) {
1091 pwd
->last_superframe_len
= 0;
1094 if (buf_size
< pwd
->ahi
.block_align
)
1096 buf_size
= pwd
->ahi
.block_align
;
1098 init_get_bits(&pwd
->gb
, buf
, buf_size
);
1099 if (pwd
->use_bit_reservoir
) {
1100 int i
, nb_frames
, bit_offset
, pos
, len
;
1103 /* read super frame header */
1104 skip_bits(&pwd
->gb
, 4); /* super frame index */
1105 nb_frames
= get_bits(&pwd
->gb
, 4) - 1;
1106 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1107 ret
= -E_WMA_OUTPUT_SPACE
;
1108 if ((nb_frames
+ 1) * pwd
->ahi
.channels
* pwd
->frame_len
1109 * sizeof(int16_t) > *data_size
)
1112 bit_offset
= get_bits(&pwd
->gb
, pwd
->byte_offset_bits
+ 3);
1114 if (pwd
->last_superframe_len
> 0) {
1115 /* add bit_offset bits to last frame */
1116 ret
= -E_WMA_BAD_SUPERFRAME
;
1117 if ((pwd
->last_superframe_len
+ ((bit_offset
+ 7) >> 3)) >
1118 MAX_CODED_SUPERFRAME_SIZE
)
1120 q
= pwd
->last_superframe
+ pwd
->last_superframe_len
;
1123 *q
++ = get_bits(&pwd
->gb
, 8);
1127 *q
++ = get_bits(&pwd
->gb
, len
) << (8 - len
);
1129 /* XXX: bit_offset bits into last frame */
1130 init_get_bits(&pwd
->gb
, pwd
->last_superframe
,
1131 MAX_CODED_SUPERFRAME_SIZE
);
1132 /* skip unused bits */
1133 if (pwd
->last_bitoffset
> 0)
1134 skip_bits(&pwd
->gb
, pwd
->last_bitoffset
);
1136 * This frame is stored in the last superframe and in
1139 ret
= wma_decode_frame(pwd
, samples
);
1142 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1145 /* read each frame starting from bit_offset */
1146 pos
= bit_offset
+ 4 + 4 + pwd
->byte_offset_bits
+ 3;
1147 init_get_bits(&pwd
->gb
, buf
+ (pos
>> 3),
1148 (MAX_CODED_SUPERFRAME_SIZE
- (pos
>> 3)));
1151 skip_bits(&pwd
->gb
, len
);
1153 pwd
->reset_block_lengths
= 1;
1154 for (i
= 0; i
< nb_frames
; i
++) {
1155 ret
= wma_decode_frame(pwd
, samples
);
1158 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1161 /* we copy the end of the frame in the last frame buffer */
1162 pos
= get_bits_count(&pwd
->gb
) +
1163 ((bit_offset
+ 4 + 4 + pwd
->byte_offset_bits
+ 3) & ~7);
1164 pwd
->last_bitoffset
= pos
& 7;
1166 len
= buf_size
- pos
;
1167 ret
= -E_WMA_BAD_SUPERFRAME
;
1168 if (len
> MAX_CODED_SUPERFRAME_SIZE
|| len
< 0)
1170 pwd
->last_superframe_len
= len
;
1171 memcpy(pwd
->last_superframe
, buf
+ pos
, len
);
1173 PARA_DEBUG_LOG("not using bit reservoir\n");
1174 ret
= -E_WMA_OUTPUT_SPACE
;
1175 if (pwd
->ahi
.channels
* pwd
->frame_len
* sizeof(int16_t) > *data_size
)
1177 /* single frame decode */
1178 ret
= wma_decode_frame(pwd
, samples
);
1181 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1183 PARA_DEBUG_LOG("frame_len: %d, block_len: %d, outbytes: %d, eaten: %d\n",
1184 pwd
->frame_len
, pwd
->block_len
,
1185 (int)((int8_t *)samples
- (int8_t *)data
), pwd
->ahi
.block_align
);
1186 *data_size
= (int8_t *)samples
- (int8_t *)data
;
1187 return pwd
->ahi
.block_align
;
1189 /* reset the bit reservoir on errors */
1190 pwd
->last_superframe_len
= 0;
1194 static void wmadec_close(struct filter_node
*fn
)
1196 struct private_wmadec_data
*pwd
= fn
->private_data
;
1200 wmadec_cleanup(pwd
);
1201 free(fn
->private_data
);
1202 fn
->private_data
= NULL
;
1205 static int wmadec_execute(struct btr_node
*btrn
, const char *cmd
, char **result
)
1207 struct filter_node
*fn
= btr_context(btrn
);
1208 struct private_wmadec_data
*pwd
= fn
->private_data
;
1210 return decoder_execute(cmd
, pwd
->ahi
.sample_rate
, pwd
->ahi
.channels
,
1214 #define WMA_OUTPUT_BUFFER_SIZE (128 * 1024)
1216 static int wmadec_post_select(__a_unused
struct sched
*s
, struct task
*t
)
1218 struct filter_node
*fn
= container_of(t
, struct filter_node
, task
);
1219 int ret
, converted
, out_size
;
1220 struct private_wmadec_data
*pwd
= fn
->private_data
;
1221 struct btr_node
*btrn
= fn
->btrn
;
1227 ret
= btr_node_status(btrn
, fn
->min_iqs
, BTR_NT_INTERNAL
);
1232 btr_merge(btrn
, fn
->min_iqs
);
1233 len
= btr_next_buffer(btrn
, (char **)&in
);
1234 ret
= -E_WMADEC_EOF
;
1235 if (len
< fn
->min_iqs
)
1238 ret
= wma_decode_init(in
, len
, &pwd
);
1242 fn
->min_iqs
+= 4096;
1245 fn
->min_iqs
= 2 * (WMA_FRAME_SKIP
+ pwd
->ahi
.block_align
);
1246 fn
->private_data
= pwd
;
1247 converted
= pwd
->ahi
.header_len
;
1250 fn
->min_iqs
= WMA_FRAME_SKIP
+ pwd
->ahi
.block_align
;
1251 if (fn
->min_iqs
> len
)
1253 out_size
= WMA_OUTPUT_BUFFER_SIZE
;
1254 out
= para_malloc(out_size
);
1255 ret
= wma_decode_superframe(pwd
, out
, &out_size
,
1256 (uint8_t *)in
+ WMA_FRAME_SKIP
, len
- WMA_FRAME_SKIP
);
1261 out
= para_realloc(out
, out_size
);
1263 btr_add_output(out
, out_size
, btrn
);
1264 converted
+= ret
+ WMA_FRAME_SKIP
;
1266 btr_consume(btrn
, converted
);
1270 btr_remove_node(&fn
->btrn
);
1274 static void wmadec_open(struct filter_node
*fn
)
1276 fn
->private_data
= NULL
;
1281 * The init function of the wma decoder.
1283 * \param f Its fields are filled in by the function.
1285 void wmadec_filter_init(struct filter
*f
)
1287 f
->open
= wmadec_open
;
1288 f
->close
= wmadec_close
;
1289 f
->execute
= wmadec_execute
;
1290 f
->pre_select
= generic_filter_pre_select
;
1291 f
->post_select
= wmadec_post_select
;