2 * WMA compatible decoder
4 * Extracted 2009 from the mplayer source code 2009-02-10.
6 * Copyright (c) 2002 The FFmpeg Project
8 * Licensed under the GNU Lesser General Public License.
9 * For licencing details see COPYING.LIB.
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
15 * This decoder handles Microsoft Windows Media Audio data version 2.
18 #define _XOPEN_SOURCE 600
27 #include <sys/select.h>
36 #include "buffer_tree.h"
38 #include "bitstream.h"
45 #define BLOCK_MIN_BITS 7
46 #define BLOCK_MAX_BITS 11
47 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
49 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
51 /* XXX: find exact max size */
52 #define HIGH_BAND_MAX_SIZE 16
54 /* XXX: is it a suitable value ? */
55 #define MAX_CODED_SUPERFRAME_SIZE 16384
57 #define MAX_CHANNELS 2
59 #define NOISE_TAB_SIZE 8192
61 #define LSP_POW_BITS 7
63 struct private_wmadec_data
{
64 /** Information contained in the audio file header. */
65 struct asf_header_info ahi
;
66 struct getbit_context gb
;
67 /** Whether to use the bit reservoir. */
68 int use_bit_reservoir
;
69 /** Whether to use variable block length. */
70 int use_variable_block_len
;
71 /** Whether to use exponent coding. */
73 /** Whether perceptual noise is added. */
77 int exponent_sizes
[BLOCK_NB_SIZES
];
78 uint16_t exponent_bands
[BLOCK_NB_SIZES
][25];
79 /** The index of the first coef in high band. */
80 int high_band_start
[BLOCK_NB_SIZES
];
81 /** Maximal number of coded coefficients. */
82 int coefs_end
[BLOCK_NB_SIZES
];
83 int exponent_high_sizes
[BLOCK_NB_SIZES
];
84 int exponent_high_bands
[BLOCK_NB_SIZES
][HIGH_BAND_MAX_SIZE
];
87 /* coded values in high bands */
88 int high_band_coded
[MAX_CHANNELS
][HIGH_BAND_MAX_SIZE
];
89 int high_band_values
[MAX_CHANNELS
][HIGH_BAND_MAX_SIZE
];
91 /* there are two possible tables for spectral coefficients */
92 struct vlc coef_vlc
[2];
93 uint16_t *run_table
[2];
94 uint16_t *level_table
[2];
95 const struct coef_vlc_table
*coef_vlcs
[2];
96 /** Frame length in samples. */
98 /** log2 of frame_len. */
100 /** Number of block sizes. */
103 int reset_block_lengths
;
104 /** log2 of current block length. */
106 /** log2 of next block length. */
107 int next_block_len_bits
;
108 /** log2 of previous block length. */
109 int prev_block_len_bits
;
110 /** Block length in samples. */
112 /** Current position in frame. */
114 /** True if mid/side stereo mode. */
116 /** True if channel is coded. */
117 uint8_t channel_coded
[MAX_CHANNELS
];
118 /** log2 ratio frame/exp. length. */
119 int exponents_bsize
[MAX_CHANNELS
];
121 float exponents
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
122 float max_exponent
[MAX_CHANNELS
];
123 int16_t coefs1
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
124 float coefs
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
125 float output
[BLOCK_MAX_SIZE
* 2];
126 struct mdct_context
*mdct_ctx
[BLOCK_NB_SIZES
];
127 float *windows
[BLOCK_NB_SIZES
];
128 /** Output buffer for one frame and the last for IMDCT windowing. */
129 float frame_out
[MAX_CHANNELS
][BLOCK_MAX_SIZE
* 2];
130 /** Last frame info. */
131 uint8_t last_superframe
[MAX_CODED_SUPERFRAME_SIZE
+ 4]; /* padding added */
133 int last_superframe_len
;
134 float noise_table
[NOISE_TAB_SIZE
];
136 float noise_mult
; /* XXX: suppress that and integrate it in the noise array */
137 /* lsp_to_curve tables */
138 float lsp_cos_table
[BLOCK_MAX_SIZE
];
139 float lsp_pow_e_table
[256];
140 float lsp_pow_m_table1
[(1 << LSP_POW_BITS
)];
141 float lsp_pow_m_table2
[(1 << LSP_POW_BITS
)];
145 #define EXPMAX DIV_ROUND_UP(19, EXPVLCBITS)
147 #define HGAINVLCBITS 9
148 #define HGAINMAX DIV_ROUND_UP(13, HGAINVLCBITS)
151 #define VLCMAX DIV_ROUND_UP(22, VLCBITS)
153 #define SINE_WINDOW(x) static float sine_ ## x[x] __a_aligned(16)
162 static float *sine_windows
[6] = {
163 sine_128
, sine_256
, sine_512
, sine_1024
, sine_2048
, sine_4096
166 /* Generate a sine window. */
167 static void sine_window_init(float *window
, int n
)
171 for (i
= 0; i
< n
; i
++)
172 window
[i
] = sinf((i
+ 0.5) * (M_PI
/ (2.0 * n
)));
175 static void wmadec_cleanup(struct private_wmadec_data
*pwd
)
179 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++)
180 imdct_end(pwd
->mdct_ctx
[i
]);
181 if (pwd
->use_exp_vlc
)
182 free_vlc(&pwd
->exp_vlc
);
183 if (pwd
->use_noise_coding
)
184 free_vlc(&pwd
->hgain_vlc
);
185 for (i
= 0; i
< 2; i
++) {
186 free_vlc(&pwd
->coef_vlc
[i
]);
187 free(pwd
->run_table
[i
]);
188 free(pwd
->level_table
[i
]);
192 static void init_coef_vlc(struct vlc
*vlc
, uint16_t **prun_table
,
193 uint16_t **plevel_table
, const struct coef_vlc_table
*vlc_table
)
195 int n
= vlc_table
->n
;
196 const uint8_t *table_bits
= vlc_table
->huffbits
;
197 const uint32_t *table_codes
= vlc_table
->huffcodes
;
198 const uint16_t *levels_table
= vlc_table
->levels
;
199 uint16_t *run_table
, *level_table
;
200 int i
, l
, j
, k
, level
;
202 init_vlc(vlc
, VLCBITS
, n
, table_bits
, table_codes
, 4);
204 run_table
= para_malloc(n
* sizeof(uint16_t));
205 level_table
= para_malloc(n
* sizeof(uint16_t));
210 l
= levels_table
[k
++];
211 for (j
= 0; j
< l
; j
++) {
213 level_table
[i
] = level
;
218 *prun_table
= run_table
;
219 *plevel_table
= level_table
;
222 /* compute the scale factor band sizes for each MDCT block size */
223 static void compute_scale_factor_band_sizes(struct private_wmadec_data
*pwd
,
226 struct asf_header_info
*ahi
= &pwd
->ahi
;
227 int a
, b
, pos
, lpos
, k
, block_len
, i
, j
, n
;
228 const uint8_t *table
;
230 for (k
= 0; k
< pwd
->nb_block_sizes
; k
++) {
231 block_len
= pwd
->frame_len
>> k
;
234 a
= pwd
->frame_len_bits
- BLOCK_MIN_BITS
- k
;
236 if (ahi
->sample_rate
>= 44100)
237 table
= exponent_band_44100
[a
];
238 else if (ahi
->sample_rate
>= 32000)
239 table
= exponent_band_32000
[a
];
240 else if (ahi
->sample_rate
>= 22050)
241 table
= exponent_band_22050
[a
];
245 for (i
= 0; i
< n
; i
++)
246 pwd
->exponent_bands
[k
][i
] = table
[i
];
247 pwd
->exponent_sizes
[k
] = n
;
251 for (i
= 0; i
< 25; i
++) {
252 a
= wma_critical_freqs
[i
];
253 b
= ahi
->sample_rate
;
254 pos
= ((block_len
* 2 * a
) + (b
<< 1)) / (4 * b
);
259 pwd
->exponent_bands
[k
][j
++] = pos
- lpos
;
260 if (pos
>= block_len
)
264 pwd
->exponent_sizes
[k
] = j
;
267 /* max number of coefs */
268 pwd
->coefs_end
[k
] = (pwd
->frame_len
- ((pwd
->frame_len
* 9) / 100)) >> k
;
269 /* high freq computation */
270 pwd
->high_band_start
[k
] = (int) ((block_len
* 2 * high_freq
)
271 / ahi
->sample_rate
+ 0.5);
272 n
= pwd
->exponent_sizes
[k
];
275 for (i
= 0; i
< n
; i
++) {
278 pos
+= pwd
->exponent_bands
[k
][i
];
280 if (start
< pwd
->high_band_start
[k
])
281 start
= pwd
->high_band_start
[k
];
282 if (end
> pwd
->coefs_end
[k
])
283 end
= pwd
->coefs_end
[k
];
285 pwd
->exponent_high_bands
[k
][j
++] = end
- start
;
287 pwd
->exponent_high_sizes
[k
] = j
;
291 static int wma_init(struct private_wmadec_data
*pwd
)
294 float bps1
, high_freq
;
298 struct asf_header_info
*ahi
= &pwd
->ahi
;
299 int flags2
= ahi
->flags2
;
301 if (ahi
->sample_rate
<= 0 || ahi
->sample_rate
> 50000
302 || ahi
->channels
<= 0 || ahi
->channels
> 8
303 || ahi
->bit_rate
<= 0)
304 return -E_WMA_BAD_PARAMS
;
306 /* compute MDCT block size */
307 if (ahi
->sample_rate
<= 16000)
308 pwd
->frame_len_bits
= 9;
309 else if (ahi
->sample_rate
<= 22050)
310 pwd
->frame_len_bits
= 10;
312 pwd
->frame_len_bits
= 11;
313 pwd
->frame_len
= 1 << pwd
->frame_len_bits
;
314 if (pwd
->use_variable_block_len
) {
316 nb
= ((flags2
>> 3) & 3) + 1;
317 if ((ahi
->bit_rate
/ ahi
->channels
) >= 32000)
319 nb_max
= pwd
->frame_len_bits
- BLOCK_MIN_BITS
;
322 pwd
->nb_block_sizes
= nb
+ 1;
324 pwd
->nb_block_sizes
= 1;
326 /* init rate dependent parameters */
327 pwd
->use_noise_coding
= 1;
328 high_freq
= ahi
->sample_rate
* 0.5;
330 /* wma2 rates are normalized */
331 sample_rate1
= ahi
->sample_rate
;
332 if (sample_rate1
>= 44100)
333 sample_rate1
= 44100;
334 else if (sample_rate1
>= 22050)
335 sample_rate1
= 22050;
336 else if (sample_rate1
>= 16000)
337 sample_rate1
= 16000;
338 else if (sample_rate1
>= 11025)
339 sample_rate1
= 11025;
340 else if (sample_rate1
>= 8000)
343 bps
= (float) ahi
->bit_rate
/ (float) (ahi
->channels
* ahi
->sample_rate
);
344 pwd
->byte_offset_bits
= wma_log2((int) (bps
* pwd
->frame_len
/ 8.0 + 0.5)) + 2;
346 * Compute high frequency value and choose if noise coding should be
350 if (ahi
->channels
== 2)
352 if (sample_rate1
== 44100) {
354 pwd
->use_noise_coding
= 0;
356 high_freq
= high_freq
* 0.4;
357 } else if (sample_rate1
== 22050) {
359 pwd
->use_noise_coding
= 0;
360 else if (bps1
>= 0.72)
361 high_freq
= high_freq
* 0.7;
363 high_freq
= high_freq
* 0.6;
364 } else if (sample_rate1
== 16000) {
366 high_freq
= high_freq
* 0.5;
368 high_freq
= high_freq
* 0.3;
369 } else if (sample_rate1
== 11025)
370 high_freq
= high_freq
* 0.7;
371 else if (sample_rate1
== 8000) {
373 high_freq
= high_freq
* 0.5;
375 pwd
->use_noise_coding
= 0;
377 high_freq
= high_freq
* 0.65;
380 high_freq
= high_freq
* 0.75;
382 high_freq
= high_freq
* 0.6;
384 high_freq
= high_freq
* 0.5;
386 PARA_INFO_LOG("channels=%d sample_rate=%d "
387 "bitrate=%d block_align=%d\n",
388 ahi
->channels
, ahi
->sample_rate
,
389 ahi
->bit_rate
, ahi
->block_align
);
390 PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
391 "high_freq=%f bitoffset=%d\n",
392 pwd
->frame_len
, bps
, bps1
,
393 high_freq
, pwd
->byte_offset_bits
);
394 PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
395 pwd
->use_noise_coding
, pwd
->use_exp_vlc
, pwd
->nb_block_sizes
);
397 compute_scale_factor_band_sizes(pwd
, high_freq
);
398 /* init MDCT windows : simple sinus window */
399 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++) {
401 n
= 1 << (pwd
->frame_len_bits
- i
);
402 sine_window_init(sine_windows
[pwd
->frame_len_bits
- i
- 7], n
);
403 pwd
->windows
[i
] = sine_windows
[pwd
->frame_len_bits
- i
- 7];
406 pwd
->reset_block_lengths
= 1;
408 if (pwd
->use_noise_coding
) {
409 /* init the noise generator */
410 if (pwd
->use_exp_vlc
)
411 pwd
->noise_mult
= 0.02;
413 pwd
->noise_mult
= 0.04;
419 norm
= (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd
->noise_mult
;
420 for (i
= 0; i
< NOISE_TAB_SIZE
; i
++) {
421 seed
= seed
* 314159 + 1;
422 pwd
->noise_table
[i
] = (float) ((int) seed
) * norm
;
427 /* choose the VLC tables for the coefficients */
429 if (ahi
->sample_rate
>= 32000) {
432 else if (bps1
< 1.16)
435 pwd
->coef_vlcs
[0] = &coef_vlcs
[coef_vlc_table
* 2];
436 pwd
->coef_vlcs
[1] = &coef_vlcs
[coef_vlc_table
* 2 + 1];
437 init_coef_vlc(&pwd
->coef_vlc
[0], &pwd
->run_table
[0], &pwd
->level_table
[0],
439 init_coef_vlc(&pwd
->coef_vlc
[1], &pwd
->run_table
[1], &pwd
->level_table
[1],
444 static void wma_lsp_to_curve_init(struct private_wmadec_data
*pwd
, int frame_len
)
449 wdel
= M_PI
/ frame_len
;
450 for (i
= 0; i
< frame_len
; i
++)
451 pwd
->lsp_cos_table
[i
] = 2.0f
* cos(wdel
* i
);
453 /* tables for x^-0.25 computation */
454 for (i
= 0; i
< 256; i
++) {
456 pwd
->lsp_pow_e_table
[i
] = pow(2.0, e
* -0.25);
459 /* These two tables are needed to avoid two operations in pow_m1_4. */
461 for (i
= (1 << LSP_POW_BITS
) - 1; i
>= 0; i
--) {
462 m
= (1 << LSP_POW_BITS
) + i
;
463 a
= (float) m
*(0.5 / (1 << LSP_POW_BITS
));
465 pwd
->lsp_pow_m_table1
[i
] = 2 * a
- b
;
466 pwd
->lsp_pow_m_table2
[i
] = b
- a
;
471 static int wma_decode_init(char *initial_buf
, int len
, struct private_wmadec_data
**result
)
473 struct private_wmadec_data
*pwd
;
476 PARA_NOTICE_LOG("initial buf: %d bytes\n", len
);
477 pwd
= para_calloc(sizeof(*pwd
));
478 ret
= read_asf_header(initial_buf
, len
, &pwd
->ahi
);
484 pwd
->use_exp_vlc
= pwd
->ahi
.flags2
& 0x0001;
485 pwd
->use_bit_reservoir
= pwd
->ahi
.flags2
& 0x0002;
486 pwd
->use_variable_block_len
= pwd
->ahi
.flags2
& 0x0004;
492 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++) {
493 ret
= imdct_init(pwd
->frame_len_bits
- i
+ 1, &pwd
->mdct_ctx
[i
]);
497 if (pwd
->use_noise_coding
) {
498 PARA_INFO_LOG("using noise coding\n");
499 init_vlc(&pwd
->hgain_vlc
, HGAINVLCBITS
,
500 sizeof(wma_hgain_huffbits
), wma_hgain_huffbits
,
501 wma_hgain_huffcodes
, 2);
504 if (pwd
->use_exp_vlc
) {
505 PARA_INFO_LOG("using exp_vlc\n");
506 init_vlc(&pwd
->exp_vlc
, EXPVLCBITS
,
507 sizeof(wma_scale_huffbits
), wma_scale_huffbits
,
508 wma_scale_huffcodes
, 4);
510 PARA_INFO_LOG("using curve\n");
511 wma_lsp_to_curve_init(pwd
, pwd
->frame_len
);
514 return pwd
->ahi
.header_len
;
518 * compute x^-0.25 with an exponent and mantissa table. We use linear
519 * interpolation to reduce the mantissa table size at a small speed
520 * expense (linear interpolation approximately doubles the number of
521 * bits of precision).
523 static inline float pow_m1_4(struct private_wmadec_data
*pwd
, float x
)
534 m
= (u
.v
>> (23 - LSP_POW_BITS
)) & ((1 << LSP_POW_BITS
) - 1);
535 /* build interpolation scale: 1 <= t < 2. */
536 t
.v
= ((u
.v
<< LSP_POW_BITS
) & ((1 << 23) - 1)) | (127 << 23);
537 a
= pwd
->lsp_pow_m_table1
[m
];
538 b
= pwd
->lsp_pow_m_table2
[m
];
539 return pwd
->lsp_pow_e_table
[e
] * (a
+ b
* t
.f
);
542 static void wma_lsp_to_curve(struct private_wmadec_data
*pwd
,
543 float *out
, float *val_max_ptr
, int n
, float *lsp
)
546 float p
, q
, w
, v
, val_max
;
549 for (i
= 0; i
< n
; i
++) {
552 w
= pwd
->lsp_cos_table
[i
];
553 for (j
= 1; j
< NB_LSP_COEFS
; j
+= 2) {
560 v
= pow_m1_4(pwd
, v
);
565 *val_max_ptr
= val_max
;
568 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
569 static void decode_exp_lsp(struct private_wmadec_data
*pwd
, int ch
)
571 float lsp_coefs
[NB_LSP_COEFS
];
574 for (i
= 0; i
< NB_LSP_COEFS
; i
++) {
575 if (i
== 0 || i
>= 8)
576 val
= get_bits(&pwd
->gb
, 3);
578 val
= get_bits(&pwd
->gb
, 4);
579 lsp_coefs
[i
] = wma_lsp_codebook
[i
][val
];
582 wma_lsp_to_curve(pwd
, pwd
->exponents
[ch
], &pwd
->max_exponent
[ch
],
583 pwd
->block_len
, lsp_coefs
);
586 /* Decode exponents coded with VLC codes. */
587 static int decode_exp_vlc(struct private_wmadec_data
*pwd
, int ch
)
589 int last_exp
, n
, code
;
590 const uint16_t *ptr
, *band_ptr
;
591 float v
, *q
, max_scale
, *q_end
;
593 band_ptr
= pwd
->exponent_bands
[pwd
->frame_len_bits
- pwd
->block_len_bits
];
595 q
= pwd
->exponents
[ch
];
596 q_end
= q
+ pwd
->block_len
;
601 code
= get_vlc(&pwd
->gb
, pwd
->exp_vlc
.table
, EXPVLCBITS
, EXPMAX
);
604 /* NOTE: this offset is the same as MPEG4 AAC ! */
605 last_exp
+= code
- 60;
606 /* XXX: use a table */
607 v
= pow(10, last_exp
* (1.0 / 16.0));
615 pwd
->max_exponent
[ch
] = max_scale
;
619 /* compute src0 * src1 + src2 */
620 static inline void vector_mult_add(float *dst
, const float *src0
, const float *src1
,
621 const float *src2
, int len
)
625 for (i
= 0; i
< len
; i
++)
626 dst
[i
] = src0
[i
] * src1
[i
] + src2
[i
];
629 static inline void vector_mult_reverse(float *dst
, const float *src0
,
630 const float *src1
, int len
)
635 for (i
= 0; i
< len
; i
++)
636 dst
[i
] = src0
[i
] * src1
[-i
];
640 * Apply MDCT window and add into output.
642 * We ensure that when the windows overlap their squared sum
643 * is always 1 (MDCT reconstruction rule).
645 static void wma_window(struct private_wmadec_data
*pwd
, float *out
)
647 float *in
= pwd
->output
;
648 int block_len
, bsize
, n
;
651 if (pwd
->block_len_bits
<= pwd
->prev_block_len_bits
) {
652 block_len
= pwd
->block_len
;
653 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
654 vector_mult_add(out
, in
, pwd
->windows
[bsize
], out
, block_len
);
656 block_len
= 1 << pwd
->prev_block_len_bits
;
657 n
= (pwd
->block_len
- block_len
) / 2;
658 bsize
= pwd
->frame_len_bits
- pwd
->prev_block_len_bits
;
659 vector_mult_add(out
+ n
, in
+ n
, pwd
->windows
[bsize
], out
+ n
,
661 memcpy(out
+ n
+ block_len
, in
+ n
+ block_len
,
664 out
+= pwd
->block_len
;
665 in
+= pwd
->block_len
;
667 if (pwd
->block_len_bits
<= pwd
->next_block_len_bits
) {
668 block_len
= pwd
->block_len
;
669 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
670 vector_mult_reverse(out
, in
, pwd
->windows
[bsize
], block_len
);
672 block_len
= 1 << pwd
->next_block_len_bits
;
673 n
= (pwd
->block_len
- block_len
) / 2;
674 bsize
= pwd
->frame_len_bits
- pwd
->next_block_len_bits
;
675 memcpy(out
, in
, n
* sizeof(float));
676 vector_mult_reverse(out
+ n
, in
+ n
, pwd
->windows
[bsize
],
678 memset(out
+ n
+ block_len
, 0, n
* sizeof(float));
682 static int wma_total_gain_to_bits(int total_gain
)
686 else if (total_gain
< 32)
688 else if (total_gain
< 40)
690 else if (total_gain
< 45)
696 static int compute_high_band_values(struct private_wmadec_data
*pwd
,
697 int bsize
, int nb_coefs
[MAX_CHANNELS
])
701 if (!pwd
->use_noise_coding
)
703 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
705 if (!pwd
->channel_coded
[ch
])
707 m
= pwd
->exponent_high_sizes
[bsize
];
708 for (i
= 0; i
< m
; i
++) {
709 a
= get_bit(&pwd
->gb
);
710 pwd
->high_band_coded
[ch
][i
] = a
;
713 nb_coefs
[ch
] -= pwd
->exponent_high_bands
[bsize
][i
];
716 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
718 if (!pwd
->channel_coded
[ch
])
720 n
= pwd
->exponent_high_sizes
[bsize
];
721 val
= (int)0x80000000;
722 for (i
= 0; i
< n
; i
++) {
723 if (!pwd
->high_band_coded
[ch
][i
])
725 if (val
== (int)0x80000000)
726 val
= get_bits(&pwd
->gb
, 7) - 19;
728 int code
= get_vlc(&pwd
->gb
,
729 pwd
->hgain_vlc
.table
, HGAINVLCBITS
,
735 pwd
->high_band_values
[ch
][i
] = val
;
741 static void compute_mdct_coefficients(struct private_wmadec_data
*pwd
,
742 int bsize
, int total_gain
, int nb_coefs
[MAX_CHANNELS
])
745 float mdct_norm
= 1.0 / (pwd
->block_len
/ 2);
747 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
749 float *coefs
, *exponents
, mult
, mult1
, noise
;
750 int i
, j
, n
, n1
, last_high_band
, esize
;
751 float exp_power
[HIGH_BAND_MAX_SIZE
];
753 if (!pwd
->channel_coded
[ch
])
755 coefs1
= pwd
->coefs1
[ch
];
756 exponents
= pwd
->exponents
[ch
];
757 esize
= pwd
->exponents_bsize
[ch
];
758 mult
= pow(10, total_gain
* 0.05) / pwd
->max_exponent
[ch
];
760 coefs
= pwd
->coefs
[ch
];
761 if (!pwd
->use_noise_coding
) {
762 /* XXX: optimize more */
764 for (i
= 0; i
< n
; i
++)
765 *coefs
++ = coefs1
[i
] *
766 exponents
[i
<< bsize
>> esize
] * mult
;
767 n
= pwd
->block_len
- pwd
->coefs_end
[bsize
];
768 for (i
= 0; i
< n
; i
++)
773 n1
= pwd
->exponent_high_sizes
[bsize
];
774 /* compute power of high bands */
775 exponents
= pwd
->exponents
[ch
] +
776 (pwd
->high_band_start
[bsize
] << bsize
);
777 last_high_band
= 0; /* avoid warning */
778 for (j
= 0; j
< n1
; j
++) {
779 n
= pwd
->exponent_high_bands
[
780 pwd
->frame_len_bits
- pwd
->block_len_bits
][j
];
781 if (pwd
->high_band_coded
[ch
][j
]) {
784 for (i
= 0; i
< n
; i
++) {
785 val
= exponents
[i
<< bsize
>> esize
];
788 exp_power
[j
] = e2
/ n
;
791 exponents
+= n
<< bsize
;
793 /* main freqs and high freqs */
794 exponents
= pwd
->exponents
[ch
];
795 for (j
= -1; j
< n1
; j
++) {
797 n
= pwd
->high_band_start
[bsize
];
799 n
= pwd
->exponent_high_bands
[pwd
->frame_len_bits
800 - pwd
->block_len_bits
][j
];
801 if (j
>= 0 && pwd
->high_band_coded
[ch
][j
]) {
802 /* use noise with specified power */
803 mult1
= sqrt(exp_power
[j
]
804 / exp_power
[last_high_band
]);
805 /* XXX: use a table */
806 mult1
= mult1
* pow(10,
807 pwd
->high_band_values
[ch
][j
] * 0.05);
808 mult1
/= (pwd
->max_exponent
[ch
] * pwd
->noise_mult
);
810 for (i
= 0; i
< n
; i
++) {
811 noise
= pwd
->noise_table
[pwd
->noise_index
];
812 pwd
->noise_index
= (pwd
->noise_index
+ 1)
813 & (NOISE_TAB_SIZE
- 1);
814 *coefs
++ = noise
* exponents
[
815 i
<< bsize
>> esize
] * mult1
;
817 exponents
+= n
<< bsize
;
819 /* coded values + small noise */
820 for (i
= 0; i
< n
; i
++) {
821 noise
= pwd
->noise_table
[pwd
->noise_index
];
822 pwd
->noise_index
= (pwd
->noise_index
+ 1)
823 & (NOISE_TAB_SIZE
- 1);
824 *coefs
++ = ((*coefs1
++) + noise
) *
825 exponents
[i
<< bsize
>> esize
]
828 exponents
+= n
<< bsize
;
831 /* very high freqs: noise */
832 n
= pwd
->block_len
- pwd
->coefs_end
[bsize
];
833 mult1
= mult
* exponents
[((-1 << bsize
)) >> esize
];
834 for (i
= 0; i
< n
; i
++) {
835 *coefs
++ = pwd
->noise_table
[pwd
->noise_index
] * mult1
;
836 pwd
->noise_index
= (pwd
->noise_index
+ 1)
837 & (NOISE_TAB_SIZE
- 1);
843 * Returns 0 if OK, 1 if last block of frame, negative on uncorrectable
846 static int wma_decode_block(struct private_wmadec_data
*pwd
)
848 int ret
, n
, v
, ch
, code
, bsize
;
849 int coef_nb_bits
, total_gain
;
850 int nb_coefs
[MAX_CHANNELS
];
852 /* compute current block length */
853 if (pwd
->use_variable_block_len
) {
854 n
= wma_log2(pwd
->nb_block_sizes
- 1) + 1;
856 if (pwd
->reset_block_lengths
) {
857 pwd
->reset_block_lengths
= 0;
858 v
= get_bits(&pwd
->gb
, n
);
859 if (v
>= pwd
->nb_block_sizes
)
860 return -E_WMA_BLOCK_SIZE
;
861 pwd
->prev_block_len_bits
= pwd
->frame_len_bits
- v
;
862 v
= get_bits(&pwd
->gb
, n
);
863 if (v
>= pwd
->nb_block_sizes
)
864 return -E_WMA_BLOCK_SIZE
;
865 pwd
->block_len_bits
= pwd
->frame_len_bits
- v
;
867 /* update block lengths */
868 pwd
->prev_block_len_bits
= pwd
->block_len_bits
;
869 pwd
->block_len_bits
= pwd
->next_block_len_bits
;
871 v
= get_bits(&pwd
->gb
, n
);
872 if (v
>= pwd
->nb_block_sizes
)
873 return -E_WMA_BLOCK_SIZE
;
874 pwd
->next_block_len_bits
= pwd
->frame_len_bits
- v
;
876 /* fixed block len */
877 pwd
->next_block_len_bits
= pwd
->frame_len_bits
;
878 pwd
->prev_block_len_bits
= pwd
->frame_len_bits
;
879 pwd
->block_len_bits
= pwd
->frame_len_bits
;
882 /* now check if the block length is coherent with the frame length */
883 pwd
->block_len
= 1 << pwd
->block_len_bits
;
884 if ((pwd
->block_pos
+ pwd
->block_len
) > pwd
->frame_len
)
885 return -E_INCOHERENT_BLOCK_LEN
;
887 if (pwd
->ahi
.channels
== 2)
888 pwd
->ms_stereo
= get_bit(&pwd
->gb
);
890 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
891 int a
= get_bit(&pwd
->gb
);
892 pwd
->channel_coded
[ch
] = a
;
896 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
898 /* if no channel coded, no need to go further */
899 /* XXX: fix potential framing problems */
904 * Read total gain and extract corresponding number of bits for coef
909 int a
= get_bits(&pwd
->gb
, 7);
915 coef_nb_bits
= wma_total_gain_to_bits(total_gain
);
917 /* compute number of coefficients */
918 n
= pwd
->coefs_end
[bsize
];
919 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++)
922 ret
= compute_high_band_values(pwd
, bsize
, nb_coefs
);
926 /* exponents can be reused in short blocks. */
927 if ((pwd
->block_len_bits
== pwd
->frame_len_bits
) || get_bit(&pwd
->gb
)) {
928 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
929 if (pwd
->channel_coded
[ch
]) {
930 if (pwd
->use_exp_vlc
) {
931 ret
= decode_exp_vlc(pwd
, ch
);
935 decode_exp_lsp(pwd
, ch
);
936 pwd
->exponents_bsize
[ch
] = bsize
;
941 /* parse spectral coefficients : just RLE encoding */
942 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
943 struct vlc
*coef_vlc
;
944 int level
, run
, tindex
;
946 const uint16_t *level_table
, *run_table
;
948 if (!pwd
->channel_coded
[ch
])
951 * special VLC tables are used for ms stereo because there is
952 * potentially less energy there
954 tindex
= (ch
== 1 && pwd
->ms_stereo
);
955 coef_vlc
= &pwd
->coef_vlc
[tindex
];
956 run_table
= pwd
->run_table
[tindex
];
957 level_table
= pwd
->level_table
[tindex
];
959 ptr
= &pwd
->coefs1
[ch
][0];
960 eptr
= ptr
+ nb_coefs
[ch
];
961 memset(ptr
, 0, pwd
->block_len
* sizeof(int16_t));
963 code
= get_vlc(&pwd
->gb
, coef_vlc
->table
,
967 if (code
== 1) /* EOB */
969 if (code
== 0) { /* escape */
970 level
= get_bits(&pwd
->gb
, coef_nb_bits
);
971 /* reading block_len_bits would be better */
972 run
= get_bits(&pwd
->gb
, pwd
->frame_len_bits
);
973 } else { /* normal code */
974 run
= run_table
[code
];
975 level
= level_table
[code
];
977 if (!get_bit(&pwd
->gb
))
981 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
985 if (ptr
>= eptr
) /* EOB can be omitted */
989 compute_mdct_coefficients(pwd
, bsize
, total_gain
, nb_coefs
);
990 if (pwd
->ms_stereo
&& pwd
->channel_coded
[1]) {
994 * Nominal case for ms stereo: we do it before mdct.
996 * No need to optimize this case because it should almost never
999 if (!pwd
->channel_coded
[0]) {
1000 PARA_NOTICE_LOG("rare ms-stereo\n");
1001 memset(pwd
->coefs
[0], 0, sizeof(float) * pwd
->block_len
);
1002 pwd
->channel_coded
[0] = 1;
1004 for (i
= 0; i
< pwd
->block_len
; i
++) {
1005 a
= pwd
->coefs
[0][i
];
1006 b
= pwd
->coefs
[1][i
];
1007 pwd
->coefs
[0][i
] = a
+ b
;
1008 pwd
->coefs
[1][i
] = a
- b
;
1012 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
1016 n4
= pwd
->block_len
/ 2;
1017 if (pwd
->channel_coded
[ch
])
1018 imdct(pwd
->mdct_ctx
[bsize
], pwd
->output
, pwd
->coefs
[ch
]);
1019 else if (!(pwd
->ms_stereo
&& ch
== 1))
1020 memset(pwd
->output
, 0, sizeof(pwd
->output
));
1022 /* multiply by the window and add in the frame */
1023 idx
= (pwd
->frame_len
/ 2) + pwd
->block_pos
- n4
;
1024 wma_window(pwd
, &pwd
->frame_out
[ch
][idx
]);
1027 /* update block number */
1028 pwd
->block_pos
+= pwd
->block_len
;
1029 if (pwd
->block_pos
>= pwd
->frame_len
)
1036 * Clip a signed integer value into the -32768,32767 range.
1038 * \param a The value to clip.
1040 * \return The clipped value.
1042 static inline int16_t av_clip_int16(int a
)
1044 if ((a
+ 32768) & ~65535)
1045 return (a
>> 31) ^ 32767;
1050 /* Decode a frame of frame_len samples. */
1051 static int wma_decode_frame(struct private_wmadec_data
*pwd
, int16_t *samples
)
1053 int ret
, i
, n
, ch
, incr
;
1057 /* read each block */
1060 ret
= wma_decode_block(pwd
);
1067 /* convert frame to integer */
1069 incr
= pwd
->ahi
.channels
;
1070 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
1072 iptr
= pwd
->frame_out
[ch
];
1074 for (i
= 0; i
< n
; i
++) {
1075 *ptr
= av_clip_int16(lrintf(*iptr
++));
1078 /* prepare for next block */
1079 memmove(&pwd
->frame_out
[ch
][0], &pwd
->frame_out
[ch
][pwd
->frame_len
],
1080 pwd
->frame_len
* sizeof(float));
1085 static int wma_decode_superframe(struct private_wmadec_data
*pwd
, void *data
,
1086 int *data_size
, const uint8_t *buf
, int buf_size
)
1091 if (buf_size
== 0) {
1092 pwd
->last_superframe_len
= 0;
1095 if (buf_size
< pwd
->ahi
.block_align
)
1097 buf_size
= pwd
->ahi
.block_align
;
1099 init_get_bits(&pwd
->gb
, buf
, buf_size
);
1100 if (pwd
->use_bit_reservoir
) {
1101 int i
, nb_frames
, bit_offset
, pos
, len
;
1104 /* read super frame header */
1105 skip_bits(&pwd
->gb
, 4); /* super frame index */
1106 nb_frames
= get_bits(&pwd
->gb
, 4) - 1;
1107 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1108 ret
= -E_WMA_OUTPUT_SPACE
;
1109 if ((nb_frames
+ 1) * pwd
->ahi
.channels
* pwd
->frame_len
1110 * sizeof(int16_t) > *data_size
)
1113 bit_offset
= get_bits(&pwd
->gb
, pwd
->byte_offset_bits
+ 3);
1115 if (pwd
->last_superframe_len
> 0) {
1116 /* add bit_offset bits to last frame */
1117 ret
= -E_WMA_BAD_SUPERFRAME
;
1118 if ((pwd
->last_superframe_len
+ ((bit_offset
+ 7) >> 3)) >
1119 MAX_CODED_SUPERFRAME_SIZE
)
1121 q
= pwd
->last_superframe
+ pwd
->last_superframe_len
;
1124 *q
++ = get_bits(&pwd
->gb
, 8);
1128 *q
++ = get_bits(&pwd
->gb
, len
) << (8 - len
);
1130 /* XXX: bit_offset bits into last frame */
1131 init_get_bits(&pwd
->gb
, pwd
->last_superframe
,
1132 MAX_CODED_SUPERFRAME_SIZE
);
1133 /* skip unused bits */
1134 if (pwd
->last_bitoffset
> 0)
1135 skip_bits(&pwd
->gb
, pwd
->last_bitoffset
);
1137 * This frame is stored in the last superframe and in
1140 ret
= wma_decode_frame(pwd
, samples
);
1143 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1146 /* read each frame starting from bit_offset */
1147 pos
= bit_offset
+ 4 + 4 + pwd
->byte_offset_bits
+ 3;
1148 init_get_bits(&pwd
->gb
, buf
+ (pos
>> 3),
1149 (MAX_CODED_SUPERFRAME_SIZE
- (pos
>> 3)));
1152 skip_bits(&pwd
->gb
, len
);
1154 pwd
->reset_block_lengths
= 1;
1155 for (i
= 0; i
< nb_frames
; i
++) {
1156 ret
= wma_decode_frame(pwd
, samples
);
1159 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1162 /* we copy the end of the frame in the last frame buffer */
1163 pos
= get_bits_count(&pwd
->gb
) +
1164 ((bit_offset
+ 4 + 4 + pwd
->byte_offset_bits
+ 3) & ~7);
1165 pwd
->last_bitoffset
= pos
& 7;
1167 len
= buf_size
- pos
;
1168 ret
= -E_WMA_BAD_SUPERFRAME
;
1169 if (len
> MAX_CODED_SUPERFRAME_SIZE
|| len
< 0)
1171 pwd
->last_superframe_len
= len
;
1172 memcpy(pwd
->last_superframe
, buf
+ pos
, len
);
1174 PARA_DEBUG_LOG("not using bit reservoir\n");
1175 ret
= -E_WMA_OUTPUT_SPACE
;
1176 if (pwd
->ahi
.channels
* pwd
->frame_len
* sizeof(int16_t) > *data_size
)
1178 /* single frame decode */
1179 ret
= wma_decode_frame(pwd
, samples
);
1182 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1184 PARA_DEBUG_LOG("frame_len: %d, block_len: %d, outbytes: %d, eaten: %d\n",
1185 pwd
->frame_len
, pwd
->block_len
,
1186 (int)((int8_t *)samples
- (int8_t *)data
), pwd
->ahi
.block_align
);
1187 *data_size
= (int8_t *)samples
- (int8_t *)data
;
1188 return pwd
->ahi
.block_align
;
1190 /* reset the bit reservoir on errors */
1191 pwd
->last_superframe_len
= 0;
1195 static void wmadec_close(struct filter_node
*fn
)
1197 struct private_wmadec_data
*pwd
= fn
->private_data
;
1201 wmadec_cleanup(pwd
);
1202 free(fn
->private_data
);
1203 fn
->private_data
= NULL
;
1206 static int wmadec_execute(struct btr_node
*btrn
, const char *cmd
, char **result
)
1208 struct filter_node
*fn
= btr_context(btrn
);
1209 struct private_wmadec_data
*pwd
= fn
->private_data
;
1211 return decoder_execute(cmd
, pwd
->ahi
.sample_rate
, pwd
->ahi
.channels
,
1215 #define WMA_OUTPUT_BUFFER_SIZE (128 * 1024)
1217 static void wmadec_post_select(__a_unused
struct sched
*s
, struct task
*t
)
1219 struct filter_node
*fn
= container_of(t
, struct filter_node
, task
);
1221 struct private_wmadec_data
*pwd
= fn
->private_data
;
1222 struct btr_node
*btrn
= fn
->btrn
;
1229 ret
= btr_node_status(btrn
, fn
->min_iqs
, BTR_NT_INTERNAL
);
1234 btr_merge(btrn
, fn
->min_iqs
);
1235 len
= btr_next_buffer(btrn
, (char **)&in
);
1236 ret
= -E_WMADEC_EOF
;
1237 if (len
< fn
->min_iqs
)
1240 ret
= wma_decode_init(in
, len
, &pwd
);
1244 fn
->min_iqs
+= 4096;
1247 fn
->min_iqs
= 2 * (WMA_FRAME_SKIP
+ pwd
->ahi
.block_align
);
1248 fn
->private_data
= pwd
;
1249 converted
= pwd
->ahi
.header_len
;
1252 fn
->min_iqs
= WMA_FRAME_SKIP
+ pwd
->ahi
.block_align
;
1255 int out_size
= WMA_OUTPUT_BUFFER_SIZE
;
1256 if (converted
+ fn
->min_iqs
> len
)
1258 out
= para_malloc(WMA_OUTPUT_BUFFER_SIZE
);
1259 ret
= wma_decode_superframe(pwd
, out
,
1260 &out_size
, (uint8_t *)in
+ converted
+ WMA_FRAME_SKIP
,
1261 len
- WMA_FRAME_SKIP
);
1266 btr_add_output(out
, out_size
, btrn
);
1267 converted
+= ret
+ WMA_FRAME_SKIP
;
1270 btr_consume(btrn
, converted
);
1275 btr_remove_node(btrn
);
1278 static void wmadec_open(struct filter_node
*fn
)
1280 fn
->private_data
= NULL
;
1285 * The init function of the wma decoder.
1287 * \param f Its fields are filled in by the function.
1289 void wmadec_filter_init(struct filter
*f
)
1291 f
->open
= wmadec_open
;
1292 f
->close
= wmadec_close
;
1293 f
->execute
= wmadec_execute
;
1294 f
->pre_select
= generic_filter_pre_select
;
1295 f
->post_select
= wmadec_post_select
;