2 * WMA compatible decoder
4 * Extracted 2009 from the mplayer source code 2009-02-10.
6 * Copyright (c) 2002 The FFmpeg Project
8 * Licensed under the GNU Lesser General Public License.
9 * For licencing details see COPYING.LIB.
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
15 * This decoder handles Microsoft Windows Media Audio data version 2.
18 #define _XOPEN_SOURCE 600
27 #include <sys/select.h>
35 #include "buffer_tree.h"
37 #include "bitstream.h"
44 #define BLOCK_MIN_BITS 7
45 #define BLOCK_MAX_BITS 11
46 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
48 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
50 /* XXX: find exact max size */
51 #define HIGH_BAND_MAX_SIZE 16
53 /* XXX: is it a suitable value ? */
54 #define MAX_CODED_SUPERFRAME_SIZE 16384
56 #define MAX_CHANNELS 2
58 #define NOISE_TAB_SIZE 8192
60 #define LSP_POW_BITS 7
62 struct private_wmadec_data
{
63 /** Information contained in the audio file header. */
64 struct asf_header_info ahi
;
65 struct getbit_context gb
;
66 /** Whether to use the bit reservoir. */
67 int use_bit_reservoir
;
68 /** Whether to use variable block length. */
69 int use_variable_block_len
;
70 /** Whether to use exponent coding. */
72 /** Whether perceptual noise is added. */
76 int exponent_sizes
[BLOCK_NB_SIZES
];
77 uint16_t exponent_bands
[BLOCK_NB_SIZES
][25];
78 /** The index of the first coef in high band. */
79 int high_band_start
[BLOCK_NB_SIZES
];
80 /** Maximal number of coded coefficients. */
81 int coefs_end
[BLOCK_NB_SIZES
];
82 int exponent_high_sizes
[BLOCK_NB_SIZES
];
83 int exponent_high_bands
[BLOCK_NB_SIZES
][HIGH_BAND_MAX_SIZE
];
86 /* coded values in high bands */
87 int high_band_coded
[MAX_CHANNELS
][HIGH_BAND_MAX_SIZE
];
88 int high_band_values
[MAX_CHANNELS
][HIGH_BAND_MAX_SIZE
];
90 /* there are two possible tables for spectral coefficients */
91 struct vlc coef_vlc
[2];
92 uint16_t *run_table
[2];
93 uint16_t *level_table
[2];
94 const struct coef_vlc_table
*coef_vlcs
[2];
95 /** Frame length in samples. */
97 /** log2 of frame_len. */
99 /** Number of block sizes. */
102 int reset_block_lengths
;
103 /** log2 of current block length. */
105 /** log2 of next block length. */
106 int next_block_len_bits
;
107 /** log2 of previous block length. */
108 int prev_block_len_bits
;
109 /** Block length in samples. */
111 /** Current position in frame. */
113 /** True if mid/side stereo mode. */
115 /** True if channel is coded. */
116 uint8_t channel_coded
[MAX_CHANNELS
];
117 /** log2 ratio frame/exp. length. */
118 int exponents_bsize
[MAX_CHANNELS
];
120 float exponents
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
121 float max_exponent
[MAX_CHANNELS
];
122 int16_t coefs1
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
123 float coefs
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
124 float output
[BLOCK_MAX_SIZE
* 2];
125 struct mdct_context
*mdct_ctx
[BLOCK_NB_SIZES
];
126 float *windows
[BLOCK_NB_SIZES
];
127 /** Output buffer for one frame and the last for IMDCT windowing. */
128 float frame_out
[MAX_CHANNELS
][BLOCK_MAX_SIZE
* 2];
129 /** Last frame info. */
130 uint8_t last_superframe
[MAX_CODED_SUPERFRAME_SIZE
+ 4]; /* padding added */
132 int last_superframe_len
;
133 float noise_table
[NOISE_TAB_SIZE
];
135 float noise_mult
; /* XXX: suppress that and integrate it in the noise array */
136 /* lsp_to_curve tables */
137 float lsp_cos_table
[BLOCK_MAX_SIZE
];
138 float lsp_pow_e_table
[256];
139 float lsp_pow_m_table1
[(1 << LSP_POW_BITS
)];
140 float lsp_pow_m_table2
[(1 << LSP_POW_BITS
)];
144 #define EXPMAX DIV_ROUND_UP(19, EXPVLCBITS)
146 #define HGAINVLCBITS 9
147 #define HGAINMAX DIV_ROUND_UP(13, HGAINVLCBITS)
150 #define VLCMAX DIV_ROUND_UP(22, VLCBITS)
152 #define SINE_WINDOW(x) static float sine_ ## x[x] __a_aligned(16)
161 static float *sine_windows
[6] = {
162 sine_128
, sine_256
, sine_512
, sine_1024
, sine_2048
, sine_4096
165 /* Generate a sine window. */
166 static void sine_window_init(float *window
, int n
)
170 for (i
= 0; i
< n
; i
++)
171 window
[i
] = sinf((i
+ 0.5) * (M_PI
/ (2.0 * n
)));
174 static void wmadec_cleanup(struct private_wmadec_data
*pwd
)
178 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++)
179 imdct_end(pwd
->mdct_ctx
[i
]);
180 if (pwd
->use_exp_vlc
)
181 free_vlc(&pwd
->exp_vlc
);
182 if (pwd
->use_noise_coding
)
183 free_vlc(&pwd
->hgain_vlc
);
184 for (i
= 0; i
< 2; i
++) {
185 free_vlc(&pwd
->coef_vlc
[i
]);
186 free(pwd
->run_table
[i
]);
187 free(pwd
->level_table
[i
]);
191 static void init_coef_vlc(struct vlc
*vlc
, uint16_t **prun_table
,
192 uint16_t **plevel_table
, const struct coef_vlc_table
*vlc_table
)
194 int n
= vlc_table
->n
;
195 const uint8_t *table_bits
= vlc_table
->huffbits
;
196 const uint32_t *table_codes
= vlc_table
->huffcodes
;
197 const uint16_t *levels_table
= vlc_table
->levels
;
198 uint16_t *run_table
, *level_table
;
199 int i
, l
, j
, k
, level
;
201 init_vlc(vlc
, VLCBITS
, n
, table_bits
, table_codes
, 4);
203 run_table
= para_malloc(n
* sizeof(uint16_t));
204 level_table
= para_malloc(n
* sizeof(uint16_t));
209 l
= levels_table
[k
++];
210 for (j
= 0; j
< l
; j
++) {
212 level_table
[i
] = level
;
217 *prun_table
= run_table
;
218 *plevel_table
= level_table
;
221 /* compute the scale factor band sizes for each MDCT block size */
222 static void compute_scale_factor_band_sizes(struct private_wmadec_data
*pwd
,
225 struct asf_header_info
*ahi
= &pwd
->ahi
;
226 int a
, b
, pos
, lpos
, k
, block_len
, i
, j
, n
;
227 const uint8_t *table
;
229 for (k
= 0; k
< pwd
->nb_block_sizes
; k
++) {
230 block_len
= pwd
->frame_len
>> k
;
233 a
= pwd
->frame_len_bits
- BLOCK_MIN_BITS
- k
;
235 if (ahi
->sample_rate
>= 44100)
236 table
= exponent_band_44100
[a
];
237 else if (ahi
->sample_rate
>= 32000)
238 table
= exponent_band_32000
[a
];
239 else if (ahi
->sample_rate
>= 22050)
240 table
= exponent_band_22050
[a
];
244 for (i
= 0; i
< n
; i
++)
245 pwd
->exponent_bands
[k
][i
] = table
[i
];
246 pwd
->exponent_sizes
[k
] = n
;
250 for (i
= 0; i
< 25; i
++) {
251 a
= wma_critical_freqs
[i
];
252 b
= ahi
->sample_rate
;
253 pos
= ((block_len
* 2 * a
) + (b
<< 1)) / (4 * b
);
258 pwd
->exponent_bands
[k
][j
++] = pos
- lpos
;
259 if (pos
>= block_len
)
263 pwd
->exponent_sizes
[k
] = j
;
266 /* max number of coefs */
267 pwd
->coefs_end
[k
] = (pwd
->frame_len
- ((pwd
->frame_len
* 9) / 100)) >> k
;
268 /* high freq computation */
269 pwd
->high_band_start
[k
] = (int) ((block_len
* 2 * high_freq
)
270 / ahi
->sample_rate
+ 0.5);
271 n
= pwd
->exponent_sizes
[k
];
274 for (i
= 0; i
< n
; i
++) {
277 pos
+= pwd
->exponent_bands
[k
][i
];
279 if (start
< pwd
->high_band_start
[k
])
280 start
= pwd
->high_band_start
[k
];
281 if (end
> pwd
->coefs_end
[k
])
282 end
= pwd
->coefs_end
[k
];
284 pwd
->exponent_high_bands
[k
][j
++] = end
- start
;
286 pwd
->exponent_high_sizes
[k
] = j
;
290 static int wma_init(struct private_wmadec_data
*pwd
)
293 float bps1
, high_freq
;
297 struct asf_header_info
*ahi
= &pwd
->ahi
;
298 int flags2
= ahi
->flags2
;
300 if (ahi
->sample_rate
<= 0 || ahi
->sample_rate
> 50000
301 || ahi
->channels
<= 0 || ahi
->channels
> 8
302 || ahi
->bit_rate
<= 0)
303 return -E_WMA_BAD_PARAMS
;
305 /* compute MDCT block size */
306 if (ahi
->sample_rate
<= 16000)
307 pwd
->frame_len_bits
= 9;
308 else if (ahi
->sample_rate
<= 22050)
309 pwd
->frame_len_bits
= 10;
311 pwd
->frame_len_bits
= 11;
312 pwd
->frame_len
= 1 << pwd
->frame_len_bits
;
313 if (pwd
->use_variable_block_len
) {
315 nb
= ((flags2
>> 3) & 3) + 1;
316 if ((ahi
->bit_rate
/ ahi
->channels
) >= 32000)
318 nb_max
= pwd
->frame_len_bits
- BLOCK_MIN_BITS
;
321 pwd
->nb_block_sizes
= nb
+ 1;
323 pwd
->nb_block_sizes
= 1;
325 /* init rate dependent parameters */
326 pwd
->use_noise_coding
= 1;
327 high_freq
= ahi
->sample_rate
* 0.5;
329 /* wma2 rates are normalized */
330 sample_rate1
= ahi
->sample_rate
;
331 if (sample_rate1
>= 44100)
332 sample_rate1
= 44100;
333 else if (sample_rate1
>= 22050)
334 sample_rate1
= 22050;
335 else if (sample_rate1
>= 16000)
336 sample_rate1
= 16000;
337 else if (sample_rate1
>= 11025)
338 sample_rate1
= 11025;
339 else if (sample_rate1
>= 8000)
342 bps
= (float) ahi
->bit_rate
/ (float) (ahi
->channels
* ahi
->sample_rate
);
343 pwd
->byte_offset_bits
= wma_log2((int) (bps
* pwd
->frame_len
/ 8.0 + 0.5)) + 2;
345 * Compute high frequency value and choose if noise coding should be
349 if (ahi
->channels
== 2)
351 if (sample_rate1
== 44100) {
353 pwd
->use_noise_coding
= 0;
355 high_freq
= high_freq
* 0.4;
356 } else if (sample_rate1
== 22050) {
358 pwd
->use_noise_coding
= 0;
359 else if (bps1
>= 0.72)
360 high_freq
= high_freq
* 0.7;
362 high_freq
= high_freq
* 0.6;
363 } else if (sample_rate1
== 16000) {
365 high_freq
= high_freq
* 0.5;
367 high_freq
= high_freq
* 0.3;
368 } else if (sample_rate1
== 11025)
369 high_freq
= high_freq
* 0.7;
370 else if (sample_rate1
== 8000) {
372 high_freq
= high_freq
* 0.5;
374 pwd
->use_noise_coding
= 0;
376 high_freq
= high_freq
* 0.65;
379 high_freq
= high_freq
* 0.75;
381 high_freq
= high_freq
* 0.6;
383 high_freq
= high_freq
* 0.5;
385 PARA_INFO_LOG("channels=%d sample_rate=%d "
386 "bitrate=%d block_align=%d\n",
387 ahi
->channels
, ahi
->sample_rate
,
388 ahi
->bit_rate
, ahi
->block_align
);
389 PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
390 "high_freq=%f bitoffset=%d\n",
391 pwd
->frame_len
, bps
, bps1
,
392 high_freq
, pwd
->byte_offset_bits
);
393 PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
394 pwd
->use_noise_coding
, pwd
->use_exp_vlc
, pwd
->nb_block_sizes
);
396 compute_scale_factor_band_sizes(pwd
, high_freq
);
397 /* init MDCT windows : simple sinus window */
398 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++) {
400 n
= 1 << (pwd
->frame_len_bits
- i
);
401 sine_window_init(sine_windows
[pwd
->frame_len_bits
- i
- 7], n
);
402 pwd
->windows
[i
] = sine_windows
[pwd
->frame_len_bits
- i
- 7];
405 pwd
->reset_block_lengths
= 1;
407 if (pwd
->use_noise_coding
) {
408 /* init the noise generator */
409 if (pwd
->use_exp_vlc
)
410 pwd
->noise_mult
= 0.02;
412 pwd
->noise_mult
= 0.04;
418 norm
= (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd
->noise_mult
;
419 for (i
= 0; i
< NOISE_TAB_SIZE
; i
++) {
420 seed
= seed
* 314159 + 1;
421 pwd
->noise_table
[i
] = (float) ((int) seed
) * norm
;
426 /* choose the VLC tables for the coefficients */
428 if (ahi
->sample_rate
>= 32000) {
431 else if (bps1
< 1.16)
434 pwd
->coef_vlcs
[0] = &coef_vlcs
[coef_vlc_table
* 2];
435 pwd
->coef_vlcs
[1] = &coef_vlcs
[coef_vlc_table
* 2 + 1];
436 init_coef_vlc(&pwd
->coef_vlc
[0], &pwd
->run_table
[0], &pwd
->level_table
[0],
438 init_coef_vlc(&pwd
->coef_vlc
[1], &pwd
->run_table
[1], &pwd
->level_table
[1],
443 static void wma_lsp_to_curve_init(struct private_wmadec_data
*pwd
, int frame_len
)
448 wdel
= M_PI
/ frame_len
;
449 for (i
= 0; i
< frame_len
; i
++)
450 pwd
->lsp_cos_table
[i
] = 2.0f
* cos(wdel
* i
);
452 /* tables for x^-0.25 computation */
453 for (i
= 0; i
< 256; i
++) {
455 pwd
->lsp_pow_e_table
[i
] = pow(2.0, e
* -0.25);
458 /* These two tables are needed to avoid two operations in pow_m1_4. */
460 for (i
= (1 << LSP_POW_BITS
) - 1; i
>= 0; i
--) {
461 m
= (1 << LSP_POW_BITS
) + i
;
462 a
= (float) m
*(0.5 / (1 << LSP_POW_BITS
));
464 pwd
->lsp_pow_m_table1
[i
] = 2 * a
- b
;
465 pwd
->lsp_pow_m_table2
[i
] = b
- a
;
470 static int wma_decode_init(char *initial_buf
, int len
, struct private_wmadec_data
**result
)
472 struct private_wmadec_data
*pwd
;
475 PARA_NOTICE_LOG("initial buf: %d bytes\n", len
);
476 pwd
= para_calloc(sizeof(*pwd
));
477 ret
= read_asf_header(initial_buf
, len
, &pwd
->ahi
);
483 pwd
->use_exp_vlc
= pwd
->ahi
.flags2
& 0x0001;
484 pwd
->use_bit_reservoir
= pwd
->ahi
.flags2
& 0x0002;
485 pwd
->use_variable_block_len
= pwd
->ahi
.flags2
& 0x0004;
491 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++) {
492 ret
= imdct_init(pwd
->frame_len_bits
- i
+ 1, &pwd
->mdct_ctx
[i
]);
496 if (pwd
->use_noise_coding
) {
497 PARA_INFO_LOG("using noise coding\n");
498 init_vlc(&pwd
->hgain_vlc
, HGAINVLCBITS
,
499 sizeof(wma_hgain_huffbits
), wma_hgain_huffbits
,
500 wma_hgain_huffcodes
, 2);
503 if (pwd
->use_exp_vlc
) {
504 PARA_INFO_LOG("using exp_vlc\n");
505 init_vlc(&pwd
->exp_vlc
, EXPVLCBITS
,
506 sizeof(wma_scale_huffbits
), wma_scale_huffbits
,
507 wma_scale_huffcodes
, 4);
509 PARA_INFO_LOG("using curve\n");
510 wma_lsp_to_curve_init(pwd
, pwd
->frame_len
);
513 return pwd
->ahi
.header_len
;
517 * compute x^-0.25 with an exponent and mantissa table. We use linear
518 * interpolation to reduce the mantissa table size at a small speed
519 * expense (linear interpolation approximately doubles the number of
520 * bits of precision).
522 static inline float pow_m1_4(struct private_wmadec_data
*pwd
, float x
)
533 m
= (u
.v
>> (23 - LSP_POW_BITS
)) & ((1 << LSP_POW_BITS
) - 1);
534 /* build interpolation scale: 1 <= t < 2. */
535 t
.v
= ((u
.v
<< LSP_POW_BITS
) & ((1 << 23) - 1)) | (127 << 23);
536 a
= pwd
->lsp_pow_m_table1
[m
];
537 b
= pwd
->lsp_pow_m_table2
[m
];
538 return pwd
->lsp_pow_e_table
[e
] * (a
+ b
* t
.f
);
541 static void wma_lsp_to_curve(struct private_wmadec_data
*pwd
,
542 float *out
, float *val_max_ptr
, int n
, float *lsp
)
545 float p
, q
, w
, v
, val_max
;
548 for (i
= 0; i
< n
; i
++) {
551 w
= pwd
->lsp_cos_table
[i
];
552 for (j
= 1; j
< NB_LSP_COEFS
; j
+= 2) {
559 v
= pow_m1_4(pwd
, v
);
564 *val_max_ptr
= val_max
;
567 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
568 static void decode_exp_lsp(struct private_wmadec_data
*pwd
, int ch
)
570 float lsp_coefs
[NB_LSP_COEFS
];
573 for (i
= 0; i
< NB_LSP_COEFS
; i
++) {
574 if (i
== 0 || i
>= 8)
575 val
= get_bits(&pwd
->gb
, 3);
577 val
= get_bits(&pwd
->gb
, 4);
578 lsp_coefs
[i
] = wma_lsp_codebook
[i
][val
];
581 wma_lsp_to_curve(pwd
, pwd
->exponents
[ch
], &pwd
->max_exponent
[ch
],
582 pwd
->block_len
, lsp_coefs
);
585 /* Decode exponents coded with VLC codes. */
586 static int decode_exp_vlc(struct private_wmadec_data
*pwd
, int ch
)
588 int last_exp
, n
, code
;
589 const uint16_t *ptr
, *band_ptr
;
590 float v
, *q
, max_scale
, *q_end
;
592 band_ptr
= pwd
->exponent_bands
[pwd
->frame_len_bits
- pwd
->block_len_bits
];
594 q
= pwd
->exponents
[ch
];
595 q_end
= q
+ pwd
->block_len
;
600 code
= get_vlc(&pwd
->gb
, pwd
->exp_vlc
.table
, EXPVLCBITS
, EXPMAX
);
603 /* NOTE: this offset is the same as MPEG4 AAC ! */
604 last_exp
+= code
- 60;
605 /* XXX: use a table */
606 v
= pow(10, last_exp
* (1.0 / 16.0));
614 pwd
->max_exponent
[ch
] = max_scale
;
618 /* compute src0 * src1 + src2 */
619 static inline void vector_mult_add(float *dst
, const float *src0
, const float *src1
,
620 const float *src2
, int len
)
624 for (i
= 0; i
< len
; i
++)
625 dst
[i
] = src0
[i
] * src1
[i
] + src2
[i
];
628 static inline void vector_mult_reverse(float *dst
, const float *src0
,
629 const float *src1
, int len
)
634 for (i
= 0; i
< len
; i
++)
635 dst
[i
] = src0
[i
] * src1
[-i
];
639 * Apply MDCT window and add into output.
641 * We ensure that when the windows overlap their squared sum
642 * is always 1 (MDCT reconstruction rule).
644 static void wma_window(struct private_wmadec_data
*pwd
, float *out
)
646 float *in
= pwd
->output
;
647 int block_len
, bsize
, n
;
650 if (pwd
->block_len_bits
<= pwd
->prev_block_len_bits
) {
651 block_len
= pwd
->block_len
;
652 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
653 vector_mult_add(out
, in
, pwd
->windows
[bsize
], out
, block_len
);
655 block_len
= 1 << pwd
->prev_block_len_bits
;
656 n
= (pwd
->block_len
- block_len
) / 2;
657 bsize
= pwd
->frame_len_bits
- pwd
->prev_block_len_bits
;
658 vector_mult_add(out
+ n
, in
+ n
, pwd
->windows
[bsize
], out
+ n
,
660 memcpy(out
+ n
+ block_len
, in
+ n
+ block_len
,
663 out
+= pwd
->block_len
;
664 in
+= pwd
->block_len
;
666 if (pwd
->block_len_bits
<= pwd
->next_block_len_bits
) {
667 block_len
= pwd
->block_len
;
668 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
669 vector_mult_reverse(out
, in
, pwd
->windows
[bsize
], block_len
);
671 block_len
= 1 << pwd
->next_block_len_bits
;
672 n
= (pwd
->block_len
- block_len
) / 2;
673 bsize
= pwd
->frame_len_bits
- pwd
->next_block_len_bits
;
674 memcpy(out
, in
, n
* sizeof(float));
675 vector_mult_reverse(out
+ n
, in
+ n
, pwd
->windows
[bsize
],
677 memset(out
+ n
+ block_len
, 0, n
* sizeof(float));
681 static int wma_total_gain_to_bits(int total_gain
)
685 else if (total_gain
< 32)
687 else if (total_gain
< 40)
689 else if (total_gain
< 45)
695 static int compute_high_band_values(struct private_wmadec_data
*pwd
,
696 int bsize
, int nb_coefs
[MAX_CHANNELS
])
700 if (!pwd
->use_noise_coding
)
702 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
704 if (!pwd
->channel_coded
[ch
])
706 m
= pwd
->exponent_high_sizes
[bsize
];
707 for (i
= 0; i
< m
; i
++) {
708 a
= get_bit(&pwd
->gb
);
709 pwd
->high_band_coded
[ch
][i
] = a
;
712 nb_coefs
[ch
] -= pwd
->exponent_high_bands
[bsize
][i
];
715 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
717 if (!pwd
->channel_coded
[ch
])
719 n
= pwd
->exponent_high_sizes
[bsize
];
720 val
= (int)0x80000000;
721 for (i
= 0; i
< n
; i
++) {
722 if (!pwd
->high_band_coded
[ch
][i
])
724 if (val
== (int)0x80000000)
725 val
= get_bits(&pwd
->gb
, 7) - 19;
727 int code
= get_vlc(&pwd
->gb
,
728 pwd
->hgain_vlc
.table
, HGAINVLCBITS
,
734 pwd
->high_band_values
[ch
][i
] = val
;
740 static void compute_mdct_coefficients(struct private_wmadec_data
*pwd
,
741 int bsize
, int total_gain
, int nb_coefs
[MAX_CHANNELS
])
744 float mdct_norm
= 1.0 / (pwd
->block_len
/ 2);
746 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
748 float *coefs
, *exponents
, mult
, mult1
, noise
;
749 int i
, j
, n
, n1
, last_high_band
, esize
;
750 float exp_power
[HIGH_BAND_MAX_SIZE
];
752 if (!pwd
->channel_coded
[ch
])
754 coefs1
= pwd
->coefs1
[ch
];
755 exponents
= pwd
->exponents
[ch
];
756 esize
= pwd
->exponents_bsize
[ch
];
757 mult
= pow(10, total_gain
* 0.05) / pwd
->max_exponent
[ch
];
759 coefs
= pwd
->coefs
[ch
];
760 if (!pwd
->use_noise_coding
) {
761 /* XXX: optimize more */
763 for (i
= 0; i
< n
; i
++)
764 *coefs
++ = coefs1
[i
] *
765 exponents
[i
<< bsize
>> esize
] * mult
;
766 n
= pwd
->block_len
- pwd
->coefs_end
[bsize
];
767 for (i
= 0; i
< n
; i
++)
771 n1
= pwd
->exponent_high_sizes
[bsize
];
772 /* compute power of high bands */
773 exponents
= pwd
->exponents
[ch
] +
774 (pwd
->high_band_start
[bsize
] << bsize
);
775 last_high_band
= 0; /* avoid warning */
776 for (j
= 0; j
< n1
; j
++) {
777 n
= pwd
->exponent_high_bands
[
778 pwd
->frame_len_bits
- pwd
->block_len_bits
][j
];
779 if (pwd
->high_band_coded
[ch
][j
]) {
782 for (i
= 0; i
< n
; i
++) {
783 val
= exponents
[i
<< bsize
>> esize
];
786 exp_power
[j
] = e2
/ n
;
789 exponents
+= n
<< bsize
;
791 /* main freqs and high freqs */
792 exponents
= pwd
->exponents
[ch
];
793 for (j
= -1; j
< n1
; j
++) {
795 n
= pwd
->high_band_start
[bsize
];
797 n
= pwd
->exponent_high_bands
[pwd
->frame_len_bits
798 - pwd
->block_len_bits
][j
];
799 if (j
>= 0 && pwd
->high_band_coded
[ch
][j
]) {
800 /* use noise with specified power */
801 mult1
= sqrt(exp_power
[j
]
802 / exp_power
[last_high_band
]);
803 /* XXX: use a table */
804 mult1
*= pow(10, pwd
->high_band_values
[ch
][j
] * 0.05);
805 mult1
/= (pwd
->max_exponent
[ch
] * pwd
->noise_mult
);
807 for (i
= 0; i
< n
; i
++) {
808 noise
= pwd
->noise_table
[pwd
->noise_index
];
809 pwd
->noise_index
= (pwd
->noise_index
+ 1)
810 & (NOISE_TAB_SIZE
- 1);
811 *coefs
++ = noise
* exponents
[
812 i
<< bsize
>> esize
] * mult1
;
814 exponents
+= n
<< bsize
;
816 /* coded values + small noise */
817 for (i
= 0; i
< n
; i
++) {
818 noise
= pwd
->noise_table
[pwd
->noise_index
];
819 pwd
->noise_index
= (pwd
->noise_index
+ 1)
820 & (NOISE_TAB_SIZE
- 1);
821 *coefs
++ = ((*coefs1
++) + noise
) *
822 exponents
[i
<< bsize
>> esize
]
825 exponents
+= n
<< bsize
;
828 /* very high freqs: noise */
829 n
= pwd
->block_len
- pwd
->coefs_end
[bsize
];
830 mult1
= mult
* exponents
[((-1 << bsize
)) >> esize
];
831 for (i
= 0; i
< n
; i
++) {
832 *coefs
++ = pwd
->noise_table
[pwd
->noise_index
] * mult1
;
833 pwd
->noise_index
= (pwd
->noise_index
+ 1)
834 & (NOISE_TAB_SIZE
- 1);
840 * Returns 0 if OK, 1 if last block of frame, negative on uncorrectable
843 static int wma_decode_block(struct private_wmadec_data
*pwd
)
845 int ret
, n
, v
, ch
, code
, bsize
;
846 int coef_nb_bits
, total_gain
;
847 int nb_coefs
[MAX_CHANNELS
];
849 /* compute current block length */
850 if (pwd
->use_variable_block_len
) {
851 n
= wma_log2(pwd
->nb_block_sizes
- 1) + 1;
853 if (pwd
->reset_block_lengths
) {
854 pwd
->reset_block_lengths
= 0;
855 v
= get_bits(&pwd
->gb
, n
);
856 if (v
>= pwd
->nb_block_sizes
)
857 return -E_WMA_BLOCK_SIZE
;
858 pwd
->prev_block_len_bits
= pwd
->frame_len_bits
- v
;
859 v
= get_bits(&pwd
->gb
, n
);
860 if (v
>= pwd
->nb_block_sizes
)
861 return -E_WMA_BLOCK_SIZE
;
862 pwd
->block_len_bits
= pwd
->frame_len_bits
- v
;
864 /* update block lengths */
865 pwd
->prev_block_len_bits
= pwd
->block_len_bits
;
866 pwd
->block_len_bits
= pwd
->next_block_len_bits
;
868 v
= get_bits(&pwd
->gb
, n
);
869 if (v
>= pwd
->nb_block_sizes
)
870 return -E_WMA_BLOCK_SIZE
;
871 pwd
->next_block_len_bits
= pwd
->frame_len_bits
- v
;
873 /* fixed block len */
874 pwd
->next_block_len_bits
= pwd
->frame_len_bits
;
875 pwd
->prev_block_len_bits
= pwd
->frame_len_bits
;
876 pwd
->block_len_bits
= pwd
->frame_len_bits
;
879 /* now check if the block length is coherent with the frame length */
880 pwd
->block_len
= 1 << pwd
->block_len_bits
;
881 if ((pwd
->block_pos
+ pwd
->block_len
) > pwd
->frame_len
)
882 return -E_INCOHERENT_BLOCK_LEN
;
884 if (pwd
->ahi
.channels
== 2)
885 pwd
->ms_stereo
= get_bit(&pwd
->gb
);
887 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
888 int a
= get_bit(&pwd
->gb
);
889 pwd
->channel_coded
[ch
] = a
;
893 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
895 /* if no channel coded, no need to go further */
896 /* XXX: fix potential framing problems */
901 * Read total gain and extract corresponding number of bits for coef
906 int a
= get_bits(&pwd
->gb
, 7);
912 coef_nb_bits
= wma_total_gain_to_bits(total_gain
);
914 /* compute number of coefficients */
915 n
= pwd
->coefs_end
[bsize
];
916 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++)
919 ret
= compute_high_band_values(pwd
, bsize
, nb_coefs
);
923 /* exponents can be reused in short blocks. */
924 if ((pwd
->block_len_bits
== pwd
->frame_len_bits
) || get_bit(&pwd
->gb
)) {
925 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
926 if (pwd
->channel_coded
[ch
]) {
927 if (pwd
->use_exp_vlc
) {
928 ret
= decode_exp_vlc(pwd
, ch
);
932 decode_exp_lsp(pwd
, ch
);
933 pwd
->exponents_bsize
[ch
] = bsize
;
938 /* parse spectral coefficients : just RLE encoding */
939 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
940 struct vlc
*coef_vlc
;
941 int level
, run
, tindex
;
943 const uint16_t *level_table
, *run_table
;
945 if (!pwd
->channel_coded
[ch
])
948 * special VLC tables are used for ms stereo because there is
949 * potentially less energy there
951 tindex
= (ch
== 1 && pwd
->ms_stereo
);
952 coef_vlc
= &pwd
->coef_vlc
[tindex
];
953 run_table
= pwd
->run_table
[tindex
];
954 level_table
= pwd
->level_table
[tindex
];
956 ptr
= &pwd
->coefs1
[ch
][0];
957 eptr
= ptr
+ nb_coefs
[ch
];
958 memset(ptr
, 0, pwd
->block_len
* sizeof(int16_t));
960 code
= get_vlc(&pwd
->gb
, coef_vlc
->table
,
964 if (code
== 1) /* EOB */
966 if (code
== 0) { /* escape */
967 level
= get_bits(&pwd
->gb
, coef_nb_bits
);
968 /* reading block_len_bits would be better */
969 run
= get_bits(&pwd
->gb
, pwd
->frame_len_bits
);
970 } else { /* normal code */
971 run
= run_table
[code
];
972 level
= level_table
[code
];
974 if (!get_bit(&pwd
->gb
))
978 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
982 if (ptr
>= eptr
) /* EOB can be omitted */
986 compute_mdct_coefficients(pwd
, bsize
, total_gain
, nb_coefs
);
987 if (pwd
->ms_stereo
&& pwd
->channel_coded
[1]) {
991 * Nominal case for ms stereo: we do it before mdct.
993 * No need to optimize this case because it should almost never
996 if (!pwd
->channel_coded
[0]) {
997 PARA_NOTICE_LOG("rare ms-stereo\n");
998 memset(pwd
->coefs
[0], 0, sizeof(float) * pwd
->block_len
);
999 pwd
->channel_coded
[0] = 1;
1001 for (i
= 0; i
< pwd
->block_len
; i
++) {
1002 a
= pwd
->coefs
[0][i
];
1003 b
= pwd
->coefs
[1][i
];
1004 pwd
->coefs
[0][i
] = a
+ b
;
1005 pwd
->coefs
[1][i
] = a
- b
;
1009 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
1012 n4
= pwd
->block_len
/ 2;
1013 if (pwd
->channel_coded
[ch
])
1014 imdct(pwd
->mdct_ctx
[bsize
], pwd
->output
, pwd
->coefs
[ch
]);
1015 else if (!(pwd
->ms_stereo
&& ch
== 1))
1016 memset(pwd
->output
, 0, sizeof(pwd
->output
));
1018 /* multiply by the window and add in the frame */
1019 idx
= (pwd
->frame_len
/ 2) + pwd
->block_pos
- n4
;
1020 wma_window(pwd
, &pwd
->frame_out
[ch
][idx
]);
1023 /* update block number */
1024 pwd
->block_pos
+= pwd
->block_len
;
1025 if (pwd
->block_pos
>= pwd
->frame_len
)
1032 * Clip a signed integer value into the -32768,32767 range.
1034 * \param a The value to clip.
1036 * \return The clipped value.
1038 static inline int16_t av_clip_int16(int a
)
1040 if ((a
+ 32768) & ~65535)
1041 return (a
>> 31) ^ 32767;
1046 /* Decode a frame of frame_len samples. */
1047 static int wma_decode_frame(struct private_wmadec_data
*pwd
, int16_t *samples
)
1049 int ret
, i
, n
, ch
, incr
;
1053 /* read each block */
1056 ret
= wma_decode_block(pwd
);
1063 /* convert frame to integer */
1065 incr
= pwd
->ahi
.channels
;
1066 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
1068 iptr
= pwd
->frame_out
[ch
];
1070 for (i
= 0; i
< n
; i
++) {
1071 *ptr
= av_clip_int16(lrintf(*iptr
++));
1074 /* prepare for next block */
1075 memmove(&pwd
->frame_out
[ch
][0], &pwd
->frame_out
[ch
][pwd
->frame_len
],
1076 pwd
->frame_len
* sizeof(float));
1081 static int wma_decode_superframe(struct private_wmadec_data
*pwd
, void *data
,
1082 int *data_size
, const uint8_t *buf
, int buf_size
)
1087 if (buf_size
== 0) {
1088 pwd
->last_superframe_len
= 0;
1091 if (buf_size
< pwd
->ahi
.block_align
)
1093 buf_size
= pwd
->ahi
.block_align
;
1095 init_get_bits(&pwd
->gb
, buf
, buf_size
);
1096 if (pwd
->use_bit_reservoir
) {
1097 int i
, nb_frames
, bit_offset
, pos
, len
;
1100 /* read super frame header */
1101 skip_bits(&pwd
->gb
, 4); /* super frame index */
1102 nb_frames
= get_bits(&pwd
->gb
, 4) - 1;
1103 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1104 ret
= -E_WMA_OUTPUT_SPACE
;
1105 if ((nb_frames
+ 1) * pwd
->ahi
.channels
* pwd
->frame_len
1106 * sizeof(int16_t) > *data_size
)
1109 bit_offset
= get_bits(&pwd
->gb
, pwd
->byte_offset_bits
+ 3);
1111 if (pwd
->last_superframe_len
> 0) {
1112 /* add bit_offset bits to last frame */
1113 ret
= -E_WMA_BAD_SUPERFRAME
;
1114 if ((pwd
->last_superframe_len
+ ((bit_offset
+ 7) >> 3)) >
1115 MAX_CODED_SUPERFRAME_SIZE
)
1117 q
= pwd
->last_superframe
+ pwd
->last_superframe_len
;
1120 *q
++ = get_bits(&pwd
->gb
, 8);
1124 *q
++ = get_bits(&pwd
->gb
, len
) << (8 - len
);
1126 /* XXX: bit_offset bits into last frame */
1127 init_get_bits(&pwd
->gb
, pwd
->last_superframe
,
1128 MAX_CODED_SUPERFRAME_SIZE
);
1129 /* skip unused bits */
1130 if (pwd
->last_bitoffset
> 0)
1131 skip_bits(&pwd
->gb
, pwd
->last_bitoffset
);
1133 * This frame is stored in the last superframe and in
1136 ret
= wma_decode_frame(pwd
, samples
);
1139 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1142 /* read each frame starting from bit_offset */
1143 pos
= bit_offset
+ 4 + 4 + pwd
->byte_offset_bits
+ 3;
1144 init_get_bits(&pwd
->gb
, buf
+ (pos
>> 3),
1145 (MAX_CODED_SUPERFRAME_SIZE
- (pos
>> 3)));
1148 skip_bits(&pwd
->gb
, len
);
1150 pwd
->reset_block_lengths
= 1;
1151 for (i
= 0; i
< nb_frames
; i
++) {
1152 ret
= wma_decode_frame(pwd
, samples
);
1155 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1158 /* we copy the end of the frame in the last frame buffer */
1159 pos
= get_bits_count(&pwd
->gb
) +
1160 ((bit_offset
+ 4 + 4 + pwd
->byte_offset_bits
+ 3) & ~7);
1161 pwd
->last_bitoffset
= pos
& 7;
1163 len
= buf_size
- pos
;
1164 ret
= -E_WMA_BAD_SUPERFRAME
;
1165 if (len
> MAX_CODED_SUPERFRAME_SIZE
|| len
< 0)
1167 pwd
->last_superframe_len
= len
;
1168 memcpy(pwd
->last_superframe
, buf
+ pos
, len
);
1170 PARA_DEBUG_LOG("not using bit reservoir\n");
1171 ret
= -E_WMA_OUTPUT_SPACE
;
1172 if (pwd
->ahi
.channels
* pwd
->frame_len
* sizeof(int16_t) > *data_size
)
1174 /* single frame decode */
1175 ret
= wma_decode_frame(pwd
, samples
);
1178 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1180 PARA_DEBUG_LOG("frame_len: %d, block_len: %d, outbytes: %d, eaten: %d\n",
1181 pwd
->frame_len
, pwd
->block_len
,
1182 (int)((int8_t *)samples
- (int8_t *)data
), pwd
->ahi
.block_align
);
1183 *data_size
= (int8_t *)samples
- (int8_t *)data
;
1184 return pwd
->ahi
.block_align
;
1186 /* reset the bit reservoir on errors */
1187 pwd
->last_superframe_len
= 0;
1191 static void wmadec_close(struct filter_node
*fn
)
1193 struct private_wmadec_data
*pwd
= fn
->private_data
;
1197 wmadec_cleanup(pwd
);
1198 free(fn
->private_data
);
1199 fn
->private_data
= NULL
;
1202 static int wmadec_execute(struct btr_node
*btrn
, const char *cmd
, char **result
)
1204 struct filter_node
*fn
= btr_context(btrn
);
1205 struct private_wmadec_data
*pwd
= fn
->private_data
;
1207 return decoder_execute(cmd
, pwd
->ahi
.sample_rate
, pwd
->ahi
.channels
,
1211 #define WMA_OUTPUT_BUFFER_SIZE (128 * 1024)
1213 static void wmadec_post_select(__a_unused
struct sched
*s
, struct task
*t
)
1215 struct filter_node
*fn
= container_of(t
, struct filter_node
, task
);
1217 struct private_wmadec_data
*pwd
= fn
->private_data
;
1218 struct btr_node
*btrn
= fn
->btrn
;
1225 ret
= btr_node_status(btrn
, fn
->min_iqs
, BTR_NT_INTERNAL
);
1230 btr_merge(btrn
, fn
->min_iqs
);
1231 len
= btr_next_buffer(btrn
, (char **)&in
);
1232 ret
= -E_WMADEC_EOF
;
1233 if (len
< fn
->min_iqs
)
1236 ret
= wma_decode_init(in
, len
, &pwd
);
1240 fn
->min_iqs
+= 4096;
1243 fn
->min_iqs
= 2 * (WMA_FRAME_SKIP
+ pwd
->ahi
.block_align
);
1244 fn
->private_data
= pwd
;
1245 converted
= pwd
->ahi
.header_len
;
1248 fn
->min_iqs
= WMA_FRAME_SKIP
+ pwd
->ahi
.block_align
;
1251 int out_size
= WMA_OUTPUT_BUFFER_SIZE
;
1252 if (converted
+ fn
->min_iqs
> len
)
1254 out
= para_malloc(WMA_OUTPUT_BUFFER_SIZE
);
1255 ret
= wma_decode_superframe(pwd
, out
,
1256 &out_size
, (uint8_t *)in
+ converted
+ WMA_FRAME_SKIP
,
1257 len
- WMA_FRAME_SKIP
);
1262 btr_add_output(out
, out_size
, btrn
);
1263 converted
+= ret
+ WMA_FRAME_SKIP
;
1266 btr_consume(btrn
, converted
);
1271 btr_remove_node(btrn
);
1274 static void wmadec_open(struct filter_node
*fn
)
1276 fn
->private_data
= NULL
;
1281 * The init function of the wma decoder.
1283 * \param f Its fields are filled in by the function.
1285 void wmadec_filter_init(struct filter
*f
)
1287 f
->open
= wmadec_open
;
1288 f
->close
= wmadec_close
;
1289 f
->execute
= wmadec_execute
;
1290 f
->pre_select
= generic_filter_pre_select
;
1291 f
->post_select
= wmadec_post_select
;