2 * WMA compatible decoder
4 * Extracted 2009 from the mplayer source code 2009-02-10.
6 * Copyright (c) 2002 The FFmpeg Project
8 * Licensed under the GNU Lesser General Public License.
9 * For licencing details see COPYING.LIB.
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
15 * This decoder handles Microsoft Windows Media Audio data version 2.
18 #define _XOPEN_SOURCE 600
27 #include <sys/select.h>
36 #include "bitstream.h"
43 #define BLOCK_MIN_BITS 7
44 #define BLOCK_MAX_BITS 11
45 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
47 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
49 /* XXX: find exact max size */
50 #define HIGH_BAND_MAX_SIZE 16
52 /* XXX: is it a suitable value ? */
53 #define MAX_CODED_SUPERFRAME_SIZE 16384
55 #define MAX_CHANNELS 2
57 #define NOISE_TAB_SIZE 8192
59 #define LSP_POW_BITS 7
61 struct private_wmadec_data
{
62 struct asf_header_info ahi
;
63 struct getbit_context gb
;
64 /** Whether to use the bit reservoir. */
65 int use_bit_reservoir
;
66 /** Whether to use variable block length. */
67 int use_variable_block_len
;
68 /** Whether to use exponent coding. */
70 /** Whether perceptual noise is added. */
74 int exponent_sizes
[BLOCK_NB_SIZES
];
75 uint16_t exponent_bands
[BLOCK_NB_SIZES
][25];
76 /** The index of the first coef in high band. */
77 int high_band_start
[BLOCK_NB_SIZES
];
78 int coefs_end
[BLOCK_NB_SIZES
]; ///< max number of coded coefficients
79 int exponent_high_sizes
[BLOCK_NB_SIZES
];
80 int exponent_high_bands
[BLOCK_NB_SIZES
][HIGH_BAND_MAX_SIZE
];
83 /* coded values in high bands */
84 int high_band_coded
[MAX_CHANNELS
][HIGH_BAND_MAX_SIZE
];
85 int high_band_values
[MAX_CHANNELS
][HIGH_BAND_MAX_SIZE
];
87 /* there are two possible tables for spectral coefficients */
88 struct vlc coef_vlc
[2];
89 uint16_t *run_table
[2];
90 uint16_t *level_table
[2];
91 const struct coef_vlc_table
*coef_vlcs
[2];
93 int frame_len
; ///< frame length in samples
94 int frame_len_bits
; ///< frame_len = 1 << frame_len_bits
95 int nb_block_sizes
; ///< number of block sizes
97 int reset_block_lengths
;
98 int block_len_bits
; ///< log2 of current block length
99 int next_block_len_bits
; ///< log2 of next block length
100 int prev_block_len_bits
; ///< log2 of prev block length
101 int block_len
; ///< block length in samples
102 int block_pos
; ///< current position in frame
103 uint8_t ms_stereo
; ///< true if mid/side stereo mode
104 uint8_t channel_coded
[MAX_CHANNELS
]; ///< true if channel is coded
105 int exponents_bsize
[MAX_CHANNELS
]; ///< log2 ratio frame/exp. length
106 float exponents
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
107 float max_exponent
[MAX_CHANNELS
];
108 int16_t coefs1
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
109 float coefs
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
110 float output
[BLOCK_MAX_SIZE
* 2];
111 struct mdct_context
*mdct_ctx
[BLOCK_NB_SIZES
];
112 float *windows
[BLOCK_NB_SIZES
];
113 /* output buffer for one frame and the last for IMDCT windowing */
114 float frame_out
[MAX_CHANNELS
][BLOCK_MAX_SIZE
* 2];
115 /* last frame info */
116 uint8_t last_superframe
[MAX_CODED_SUPERFRAME_SIZE
+ 4]; /* padding added */
118 int last_superframe_len
;
119 float noise_table
[NOISE_TAB_SIZE
];
121 float noise_mult
; /* XXX: suppress that and integrate it in the noise array */
122 /* lsp_to_curve tables */
123 float lsp_cos_table
[BLOCK_MAX_SIZE
];
124 float lsp_pow_e_table
[256];
125 float lsp_pow_m_table1
[(1 << LSP_POW_BITS
)];
126 float lsp_pow_m_table2
[(1 << LSP_POW_BITS
)];
130 #define EXPMAX ((19 + EXPVLCBITS - 1) / EXPVLCBITS)
132 #define HGAINVLCBITS 9
133 #define HGAINMAX ((13 + HGAINVLCBITS - 1) / HGAINVLCBITS)
136 #define VLCMAX ((22 + VLCBITS - 1) / VLCBITS)
138 #define SINE_WINDOW(x) float sine_ ## x[x] __aligned(16)
147 static float *sine_windows
[6] = {
148 sine_128
, sine_256
, sine_512
, sine_1024
, sine_2048
, sine_4096
151 /* Generate a sine window. */
152 static void sine_window_init(float *window
, int n
)
156 for (i
= 0; i
< n
; i
++)
157 window
[i
] = sinf((i
+ 0.5) * (M_PI
/ (2.0 * n
)));
160 static void wmadec_cleanup(struct private_wmadec_data
*pwd
)
164 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++)
165 imdct_end(pwd
->mdct_ctx
[i
]);
166 if (pwd
->use_exp_vlc
)
167 free_vlc(&pwd
->exp_vlc
);
168 if (pwd
->use_noise_coding
)
169 free_vlc(&pwd
->hgain_vlc
);
170 for (i
= 0; i
< 2; i
++) {
171 free_vlc(&pwd
->coef_vlc
[i
]);
172 free(pwd
->run_table
[i
]);
173 free(pwd
->level_table
[i
]);
177 static void init_coef_vlc(struct vlc
*vlc
, uint16_t **prun_table
,
178 uint16_t **plevel_table
, const struct coef_vlc_table
*vlc_table
)
180 int n
= vlc_table
->n
;
181 const uint8_t *table_bits
= vlc_table
->huffbits
;
182 const uint32_t *table_codes
= vlc_table
->huffcodes
;
183 const uint16_t *levels_table
= vlc_table
->levels
;
184 uint16_t *run_table
, *level_table
;
185 int i
, l
, j
, k
, level
;
187 init_vlc(vlc
, VLCBITS
, n
, table_bits
, table_codes
, 4);
189 run_table
= para_malloc(n
* sizeof(uint16_t));
190 level_table
= para_malloc(n
* sizeof(uint16_t));
195 l
= levels_table
[k
++];
196 for (j
= 0; j
< l
; j
++) {
198 level_table
[i
] = level
;
203 *prun_table
= run_table
;
204 *plevel_table
= level_table
;
207 /* compute the scale factor band sizes for each MDCT block size */
208 static void compute_scale_factor_band_sizes(struct private_wmadec_data
*pwd
,
211 struct asf_header_info
*ahi
= &pwd
->ahi
;
212 int a
, b
, pos
, lpos
, k
, block_len
, i
, j
, n
;
213 const uint8_t *table
;
215 for (k
= 0; k
< pwd
->nb_block_sizes
; k
++) {
216 block_len
= pwd
->frame_len
>> k
;
219 a
= pwd
->frame_len_bits
- BLOCK_MIN_BITS
- k
;
221 if (ahi
->sample_rate
>= 44100)
222 table
= exponent_band_44100
[a
];
223 else if (ahi
->sample_rate
>= 32000)
224 table
= exponent_band_32000
[a
];
225 else if (ahi
->sample_rate
>= 22050)
226 table
= exponent_band_22050
[a
];
230 for (i
= 0; i
< n
; i
++)
231 pwd
->exponent_bands
[k
][i
] = table
[i
];
232 pwd
->exponent_sizes
[k
] = n
;
236 for (i
= 0; i
< 25; i
++) {
237 a
= wma_critical_freqs
[i
];
238 b
= ahi
->sample_rate
;
239 pos
= ((block_len
* 2 * a
) + (b
<< 1)) / (4 * b
);
244 pwd
->exponent_bands
[k
][j
++] = pos
- lpos
;
245 if (pos
>= block_len
)
249 pwd
->exponent_sizes
[k
] = j
;
252 /* max number of coefs */
253 pwd
->coefs_end
[k
] = (pwd
->frame_len
- ((pwd
->frame_len
* 9) / 100)) >> k
;
254 /* high freq computation */
255 pwd
->high_band_start
[k
] = (int) ((block_len
* 2 * high_freq
)
256 / ahi
->sample_rate
+ 0.5);
257 n
= pwd
->exponent_sizes
[k
];
260 for (i
= 0; i
< n
; i
++) {
263 pos
+= pwd
->exponent_bands
[k
][i
];
265 if (start
< pwd
->high_band_start
[k
])
266 start
= pwd
->high_band_start
[k
];
267 if (end
> pwd
->coefs_end
[k
])
268 end
= pwd
->coefs_end
[k
];
270 pwd
->exponent_high_bands
[k
][j
++] = end
- start
;
272 pwd
->exponent_high_sizes
[k
] = j
;
276 static int wma_init(struct private_wmadec_data
*pwd
)
279 float bps1
, high_freq
;
283 struct asf_header_info
*ahi
= &pwd
->ahi
;
284 int flags2
= ahi
->flags2
;
286 if (ahi
->sample_rate
<= 0 || ahi
->sample_rate
> 50000
287 || ahi
->channels
<= 0 || ahi
->channels
> 8
288 || ahi
->bit_rate
<= 0)
289 return -E_WMA_BAD_PARAMS
;
291 /* compute MDCT block size */
292 if (ahi
->sample_rate
<= 16000) {
293 pwd
->frame_len_bits
= 9;
294 } else if (ahi
->sample_rate
<= 22050) {
295 pwd
->frame_len_bits
= 10;
297 pwd
->frame_len_bits
= 11;
299 pwd
->frame_len
= 1 << pwd
->frame_len_bits
;
300 if (pwd
->use_variable_block_len
) {
302 nb
= ((flags2
>> 3) & 3) + 1;
303 if ((ahi
->bit_rate
/ ahi
->channels
) >= 32000)
305 nb_max
= pwd
->frame_len_bits
- BLOCK_MIN_BITS
;
308 pwd
->nb_block_sizes
= nb
+ 1;
310 pwd
->nb_block_sizes
= 1;
312 /* init rate dependent parameters */
313 pwd
->use_noise_coding
= 1;
314 high_freq
= ahi
->sample_rate
* 0.5;
316 /* wma2 rates are normalized */
317 sample_rate1
= ahi
->sample_rate
;
318 if (sample_rate1
>= 44100)
319 sample_rate1
= 44100;
320 else if (sample_rate1
>= 22050)
321 sample_rate1
= 22050;
322 else if (sample_rate1
>= 16000)
323 sample_rate1
= 16000;
324 else if (sample_rate1
>= 11025)
325 sample_rate1
= 11025;
326 else if (sample_rate1
>= 8000)
329 bps
= (float) ahi
->bit_rate
/ (float) (ahi
->channels
* ahi
->sample_rate
);
330 pwd
->byte_offset_bits
= wma_log2((int) (bps
* pwd
->frame_len
/ 8.0 + 0.5)) + 2;
332 * Compute high frequency value and choose if noise coding should be
336 if (ahi
->channels
== 2)
338 if (sample_rate1
== 44100) {
340 pwd
->use_noise_coding
= 0;
342 high_freq
= high_freq
* 0.4;
343 } else if (sample_rate1
== 22050) {
345 pwd
->use_noise_coding
= 0;
346 else if (bps1
>= 0.72)
347 high_freq
= high_freq
* 0.7;
349 high_freq
= high_freq
* 0.6;
350 } else if (sample_rate1
== 16000) {
352 high_freq
= high_freq
* 0.5;
354 high_freq
= high_freq
* 0.3;
355 } else if (sample_rate1
== 11025) {
356 high_freq
= high_freq
* 0.7;
357 } else if (sample_rate1
== 8000) {
359 high_freq
= high_freq
* 0.5;
360 } else if (bps
> 0.75) {
361 pwd
->use_noise_coding
= 0;
363 high_freq
= high_freq
* 0.65;
367 high_freq
= high_freq
* 0.75;
368 } else if (bps
>= 0.6) {
369 high_freq
= high_freq
* 0.6;
371 high_freq
= high_freq
* 0.5;
374 PARA_INFO_LOG("channels=%d sample_rate=%d "
375 "bitrate=%d block_align=%d\n",
376 ahi
->channels
, ahi
->sample_rate
,
377 ahi
->bit_rate
, ahi
->block_align
);
378 PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
379 "high_freq=%f bitoffset=%d\n",
380 pwd
->frame_len
, bps
, bps1
,
381 high_freq
, pwd
->byte_offset_bits
);
382 PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
383 pwd
->use_noise_coding
, pwd
->use_exp_vlc
, pwd
->nb_block_sizes
);
385 compute_scale_factor_band_sizes(pwd
, high_freq
);
386 /* init MDCT windows : simple sinus window */
387 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++) {
389 n
= 1 << (pwd
->frame_len_bits
- i
);
390 sine_window_init(sine_windows
[pwd
->frame_len_bits
- i
- 7], n
);
391 pwd
->windows
[i
] = sine_windows
[pwd
->frame_len_bits
- i
- 7];
394 pwd
->reset_block_lengths
= 1;
396 if (pwd
->use_noise_coding
) {
397 /* init the noise generator */
398 if (pwd
->use_exp_vlc
)
399 pwd
->noise_mult
= 0.02;
401 pwd
->noise_mult
= 0.04;
407 norm
= (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd
->noise_mult
;
408 for (i
= 0; i
< NOISE_TAB_SIZE
; i
++) {
409 seed
= seed
* 314159 + 1;
410 pwd
->noise_table
[i
] = (float) ((int) seed
) * norm
;
415 /* choose the VLC tables for the coefficients */
417 if (ahi
->sample_rate
>= 32000) {
420 else if (bps1
< 1.16)
423 pwd
->coef_vlcs
[0] = &coef_vlcs
[coef_vlc_table
* 2];
424 pwd
->coef_vlcs
[1] = &coef_vlcs
[coef_vlc_table
* 2 + 1];
425 init_coef_vlc(&pwd
->coef_vlc
[0], &pwd
->run_table
[0], &pwd
->level_table
[0],
427 init_coef_vlc(&pwd
->coef_vlc
[1], &pwd
->run_table
[1], &pwd
->level_table
[1],
432 static void wma_lsp_to_curve_init(struct private_wmadec_data
*pwd
, int frame_len
)
437 wdel
= M_PI
/ frame_len
;
438 for (i
= 0; i
< frame_len
; i
++)
439 pwd
->lsp_cos_table
[i
] = 2.0f
* cos(wdel
* i
);
441 /* tables for x^-0.25 computation */
442 for (i
= 0; i
< 256; i
++) {
444 pwd
->lsp_pow_e_table
[i
] = pow(2.0, e
* -0.25);
447 /* These two tables are needed to avoid two operations in pow_m1_4. */
449 for (i
= (1 << LSP_POW_BITS
) - 1; i
>= 0; i
--) {
450 m
= (1 << LSP_POW_BITS
) + i
;
451 a
= (float) m
*(0.5 / (1 << LSP_POW_BITS
));
453 pwd
->lsp_pow_m_table1
[i
] = 2 * a
- b
;
454 pwd
->lsp_pow_m_table2
[i
] = b
- a
;
459 static int wma_decode_init(char *initial_buf
, int len
, struct private_wmadec_data
**result
)
461 struct private_wmadec_data
*pwd
;
464 PARA_NOTICE_LOG("initial buf: %d bytes\n", len
);
465 pwd
= para_calloc(sizeof(*pwd
));
466 ret
= read_asf_header(initial_buf
, len
, &pwd
->ahi
);
472 pwd
->use_exp_vlc
= pwd
->ahi
.flags2
& 0x0001;
473 pwd
->use_bit_reservoir
= pwd
->ahi
.flags2
& 0x0002;
474 pwd
->use_variable_block_len
= pwd
->ahi
.flags2
& 0x0004;
480 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++) {
481 ret
= imdct_init(pwd
->frame_len_bits
- i
+ 1, &pwd
->mdct_ctx
[i
]);
485 if (pwd
->use_noise_coding
) {
486 PARA_INFO_LOG("using noise coding\n");
487 init_vlc(&pwd
->hgain_vlc
, HGAINVLCBITS
,
488 sizeof(wma_hgain_huffbits
), wma_hgain_huffbits
,
489 wma_hgain_huffcodes
, 2);
492 if (pwd
->use_exp_vlc
) {
493 PARA_INFO_LOG("using exp_vlc\n");
494 init_vlc(&pwd
->exp_vlc
, EXPVLCBITS
,
495 sizeof(wma_scale_huffbits
), wma_scale_huffbits
,
496 wma_scale_huffcodes
, 4);
498 PARA_INFO_LOG("using curve\n");
499 wma_lsp_to_curve_init(pwd
, pwd
->frame_len
);
502 return pwd
->ahi
.header_len
;
506 * compute x^-0.25 with an exponent and mantissa table. We use linear
507 * interpolation to reduce the mantissa table size at a small speed
508 * expense (linear interpolation approximately doubles the number of
509 * bits of precision).
511 static inline float pow_m1_4(struct private_wmadec_data
*pwd
, float x
)
522 m
= (u
.v
>> (23 - LSP_POW_BITS
)) & ((1 << LSP_POW_BITS
) - 1);
523 /* build interpolation scale: 1 <= t < 2. */
524 t
.v
= ((u
.v
<< LSP_POW_BITS
) & ((1 << 23) - 1)) | (127 << 23);
525 a
= pwd
->lsp_pow_m_table1
[m
];
526 b
= pwd
->lsp_pow_m_table2
[m
];
527 return pwd
->lsp_pow_e_table
[e
] * (a
+ b
* t
.f
);
530 static void wma_lsp_to_curve(struct private_wmadec_data
*pwd
,
531 float *out
, float *val_max_ptr
, int n
, float *lsp
)
534 float p
, q
, w
, v
, val_max
;
537 for (i
= 0; i
< n
; i
++) {
540 w
= pwd
->lsp_cos_table
[i
];
541 for (j
= 1; j
< NB_LSP_COEFS
; j
+= 2) {
548 v
= pow_m1_4(pwd
, v
);
553 *val_max_ptr
= val_max
;
556 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
557 static void decode_exp_lsp(struct private_wmadec_data
*pwd
, int ch
)
559 float lsp_coefs
[NB_LSP_COEFS
];
562 for (i
= 0; i
< NB_LSP_COEFS
; i
++) {
563 if (i
== 0 || i
>= 8)
564 val
= get_bits(&pwd
->gb
, 3);
566 val
= get_bits(&pwd
->gb
, 4);
567 lsp_coefs
[i
] = wma_lsp_codebook
[i
][val
];
570 wma_lsp_to_curve(pwd
, pwd
->exponents
[ch
], &pwd
->max_exponent
[ch
],
571 pwd
->block_len
, lsp_coefs
);
574 /* Decode exponents coded with VLC codes. */
575 static int decode_exp_vlc(struct private_wmadec_data
*pwd
, int ch
)
577 int last_exp
, n
, code
;
578 const uint16_t *ptr
, *band_ptr
;
579 float v
, *q
, max_scale
, *q_end
;
581 band_ptr
= pwd
->exponent_bands
[pwd
->frame_len_bits
- pwd
->block_len_bits
];
583 q
= pwd
->exponents
[ch
];
584 q_end
= q
+ pwd
->block_len
;
589 code
= get_vlc(&pwd
->gb
, pwd
->exp_vlc
.table
, EXPVLCBITS
, EXPMAX
);
592 /* NOTE: this offset is the same as MPEG4 AAC ! */
593 last_exp
+= code
- 60;
594 /* XXX: use a table */
595 v
= pow(10, last_exp
* (1.0 / 16.0));
603 pwd
->max_exponent
[ch
] = max_scale
;
607 /* compute src0 * src1 + src2 */
608 static inline void vector_mult_add(float *dst
, const float *src0
, const float *src1
,
609 const float *src2
, int len
)
613 for (i
= 0; i
< len
; i
++)
614 dst
[i
] = src0
[i
] * src1
[i
] + src2
[i
];
617 static inline void vector_mult_reverse(float *dst
, const float *src0
,
618 const float *src1
, int len
)
623 for (i
= 0; i
< len
; i
++)
624 dst
[i
] = src0
[i
] * src1
[-i
];
628 * Apply MDCT window and add into output.
630 * We ensure that when the windows overlap their squared sum
631 * is always 1 (MDCT reconstruction rule).
633 static void wma_window(struct private_wmadec_data
*pwd
, float *out
)
635 float *in
= pwd
->output
;
636 int block_len
, bsize
, n
;
639 if (pwd
->block_len_bits
<= pwd
->prev_block_len_bits
) {
640 block_len
= pwd
->block_len
;
641 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
642 vector_mult_add(out
, in
, pwd
->windows
[bsize
], out
, block_len
);
644 block_len
= 1 << pwd
->prev_block_len_bits
;
645 n
= (pwd
->block_len
- block_len
) / 2;
646 bsize
= pwd
->frame_len_bits
- pwd
->prev_block_len_bits
;
647 vector_mult_add(out
+ n
, in
+ n
, pwd
->windows
[bsize
], out
+ n
,
649 memcpy(out
+ n
+ block_len
, in
+ n
+ block_len
,
652 out
+= pwd
->block_len
;
653 in
+= pwd
->block_len
;
655 if (pwd
->block_len_bits
<= pwd
->next_block_len_bits
) {
656 block_len
= pwd
->block_len
;
657 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
658 vector_mult_reverse(out
, in
, pwd
->windows
[bsize
], block_len
);
660 block_len
= 1 << pwd
->next_block_len_bits
;
661 n
= (pwd
->block_len
- block_len
) / 2;
662 bsize
= pwd
->frame_len_bits
- pwd
->next_block_len_bits
;
663 memcpy(out
, in
, n
* sizeof(float));
664 vector_mult_reverse(out
+ n
, in
+ n
, pwd
->windows
[bsize
],
666 memset(out
+ n
+ block_len
, 0, n
* sizeof(float));
670 static int wma_total_gain_to_bits(int total_gain
)
674 else if (total_gain
< 32)
676 else if (total_gain
< 40)
678 else if (total_gain
< 45)
684 static int compute_high_band_values(struct private_wmadec_data
*pwd
,
685 int bsize
, int nb_coefs
[MAX_CHANNELS
])
689 if (!pwd
->use_noise_coding
)
691 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
693 if (!pwd
->channel_coded
[ch
])
695 m
= pwd
->exponent_high_sizes
[bsize
];
696 for (i
= 0; i
< m
; i
++) {
697 a
= get_bit(&pwd
->gb
);
698 pwd
->high_band_coded
[ch
][i
] = a
;
701 nb_coefs
[ch
] -= pwd
->exponent_high_bands
[bsize
][i
];
704 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
706 if (!pwd
->channel_coded
[ch
])
708 n
= pwd
->exponent_high_sizes
[bsize
];
709 val
= (int)0x80000000;
710 for (i
= 0; i
< n
; i
++) {
711 if (!pwd
->high_band_coded
[ch
][i
])
713 if (val
== (int)0x80000000)
714 val
= get_bits(&pwd
->gb
, 7) - 19;
716 int code
= get_vlc(&pwd
->gb
,
717 pwd
->hgain_vlc
.table
, HGAINVLCBITS
,
723 pwd
->high_band_values
[ch
][i
] = val
;
729 static void compute_mdct_coefficients(struct private_wmadec_data
*pwd
,
730 int bsize
, int total_gain
, int nb_coefs
[MAX_CHANNELS
])
733 float mdct_norm
= 1.0 / (pwd
->block_len
/ 2);
735 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
737 float *coefs
, *exponents
, mult
, mult1
, noise
;
738 int i
, j
, n
, n1
, last_high_band
, esize
;
739 float exp_power
[HIGH_BAND_MAX_SIZE
];
741 if (!pwd
->channel_coded
[ch
])
743 coefs1
= pwd
->coefs1
[ch
];
744 exponents
= pwd
->exponents
[ch
];
745 esize
= pwd
->exponents_bsize
[ch
];
746 mult
= pow(10, total_gain
* 0.05) / pwd
->max_exponent
[ch
];
748 coefs
= pwd
->coefs
[ch
];
749 if (!pwd
->use_noise_coding
) {
750 /* XXX: optimize more */
752 for (i
= 0; i
< n
; i
++)
753 *coefs
++ = coefs1
[i
] *
754 exponents
[i
<< bsize
>> esize
] * mult
;
755 n
= pwd
->block_len
- pwd
->coefs_end
[bsize
];
756 for (i
= 0; i
< n
; i
++)
761 n1
= pwd
->exponent_high_sizes
[bsize
];
762 /* compute power of high bands */
763 exponents
= pwd
->exponents
[ch
] +
764 (pwd
->high_band_start
[bsize
] << bsize
);
765 last_high_band
= 0; /* avoid warning */
766 for (j
= 0; j
< n1
; j
++) {
767 n
= pwd
->exponent_high_bands
[
768 pwd
->frame_len_bits
- pwd
->block_len_bits
][j
];
769 if (pwd
->high_band_coded
[ch
][j
]) {
772 for (i
= 0; i
< n
; i
++) {
773 val
= exponents
[i
<< bsize
>> esize
];
776 exp_power
[j
] = e2
/ n
;
779 exponents
+= n
<< bsize
;
781 /* main freqs and high freqs */
782 exponents
= pwd
->exponents
[ch
];
783 for (j
= -1; j
< n1
; j
++) {
785 n
= pwd
->high_band_start
[bsize
];
787 n
= pwd
->exponent_high_bands
[pwd
->frame_len_bits
788 - pwd
->block_len_bits
][j
];
789 if (j
>= 0 && pwd
->high_band_coded
[ch
][j
]) {
790 /* use noise with specified power */
791 mult1
= sqrt(exp_power
[j
]
792 / exp_power
[last_high_band
]);
793 /* XXX: use a table */
794 mult1
= mult1
* pow(10,
795 pwd
->high_band_values
[ch
][j
] * 0.05);
796 mult1
/= (pwd
->max_exponent
[ch
] * pwd
->noise_mult
);
798 for (i
= 0; i
< n
; i
++) {
799 noise
= pwd
->noise_table
[pwd
->noise_index
];
800 pwd
->noise_index
= (pwd
->noise_index
+ 1)
801 & (NOISE_TAB_SIZE
- 1);
802 *coefs
++ = noise
* exponents
[
803 i
<< bsize
>> esize
] * mult1
;
805 exponents
+= n
<< bsize
;
807 /* coded values + small noise */
808 for (i
= 0; i
< n
; i
++) {
809 noise
= pwd
->noise_table
[pwd
->noise_index
];
810 pwd
->noise_index
= (pwd
->noise_index
+ 1)
811 & (NOISE_TAB_SIZE
- 1);
812 *coefs
++ = ((*coefs1
++) + noise
) *
813 exponents
[i
<< bsize
>> esize
]
816 exponents
+= n
<< bsize
;
819 /* very high freqs: noise */
820 n
= pwd
->block_len
- pwd
->coefs_end
[bsize
];
821 mult1
= mult
* exponents
[((-1 << bsize
)) >> esize
];
822 for (i
= 0; i
< n
; i
++) {
823 *coefs
++ = pwd
->noise_table
[pwd
->noise_index
] * mult1
;
824 pwd
->noise_index
= (pwd
->noise_index
+ 1)
825 & (NOISE_TAB_SIZE
- 1);
831 * @return 0 if OK. 1 if last block of frame. return -1 if
832 * unrecorrable error.
834 static int wma_decode_block(struct private_wmadec_data
*pwd
)
836 int n
, v
, ch
, code
, bsize
;
837 int coef_nb_bits
, total_gain
;
838 int nb_coefs
[MAX_CHANNELS
];
840 /* compute current block length */
841 if (pwd
->use_variable_block_len
) {
842 n
= wma_log2(pwd
->nb_block_sizes
- 1) + 1;
844 if (pwd
->reset_block_lengths
) {
845 pwd
->reset_block_lengths
= 0;
846 v
= get_bits(&pwd
->gb
, n
);
847 if (v
>= pwd
->nb_block_sizes
)
849 pwd
->prev_block_len_bits
= pwd
->frame_len_bits
- v
;
850 v
= get_bits(&pwd
->gb
, n
);
851 if (v
>= pwd
->nb_block_sizes
)
853 pwd
->block_len_bits
= pwd
->frame_len_bits
- v
;
855 /* update block lengths */
856 pwd
->prev_block_len_bits
= pwd
->block_len_bits
;
857 pwd
->block_len_bits
= pwd
->next_block_len_bits
;
859 v
= get_bits(&pwd
->gb
, n
);
860 if (v
>= pwd
->nb_block_sizes
)
862 pwd
->next_block_len_bits
= pwd
->frame_len_bits
- v
;
864 /* fixed block len */
865 pwd
->next_block_len_bits
= pwd
->frame_len_bits
;
866 pwd
->prev_block_len_bits
= pwd
->frame_len_bits
;
867 pwd
->block_len_bits
= pwd
->frame_len_bits
;
870 /* now check if the block length is coherent with the frame length */
871 pwd
->block_len
= 1 << pwd
->block_len_bits
;
872 if ((pwd
->block_pos
+ pwd
->block_len
) > pwd
->frame_len
)
873 return -E_INCOHERENT_BLOCK_LEN
;
875 if (pwd
->ahi
.channels
== 2)
876 pwd
->ms_stereo
= get_bit(&pwd
->gb
);
878 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
879 int a
= get_bit(&pwd
->gb
);
880 pwd
->channel_coded
[ch
] = a
;
884 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
886 /* if no channel coded, no need to go further */
887 /* XXX: fix potential framing problems */
892 * Read total gain and extract corresponding number of bits for coef
897 int a
= get_bits(&pwd
->gb
, 7);
903 coef_nb_bits
= wma_total_gain_to_bits(total_gain
);
905 /* compute number of coefficients */
906 n
= pwd
->coefs_end
[bsize
];
907 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++)
910 if (compute_high_band_values(pwd
, bsize
, nb_coefs
) < 0)
913 /* exponents can be reused in short blocks. */
914 if ((pwd
->block_len_bits
== pwd
->frame_len_bits
) || get_bit(&pwd
->gb
)) {
915 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
916 if (pwd
->channel_coded
[ch
]) {
917 if (pwd
->use_exp_vlc
) {
918 if (decode_exp_vlc(pwd
, ch
) < 0)
921 decode_exp_lsp(pwd
, ch
);
923 pwd
->exponents_bsize
[ch
] = bsize
;
928 /* parse spectral coefficients : just RLE encoding */
929 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
930 struct vlc
*coef_vlc
;
931 int level
, run
, tindex
;
933 const uint16_t *level_table
, *run_table
;
935 if (!pwd
->channel_coded
[ch
])
938 * special VLC tables are used for ms stereo because there is
939 * potentially less energy there
941 tindex
= (ch
== 1 && pwd
->ms_stereo
);
942 coef_vlc
= &pwd
->coef_vlc
[tindex
];
943 run_table
= pwd
->run_table
[tindex
];
944 level_table
= pwd
->level_table
[tindex
];
946 ptr
= &pwd
->coefs1
[ch
][0];
947 eptr
= ptr
+ nb_coefs
[ch
];
948 memset(ptr
, 0, pwd
->block_len
* sizeof(int16_t));
950 code
= get_vlc(&pwd
->gb
, coef_vlc
->table
,
954 if (code
== 1) /* EOB */
956 if (code
== 0) { /* escape */
957 level
= get_bits(&pwd
->gb
, coef_nb_bits
);
958 /* reading block_len_bits would be better */
959 run
= get_bits(&pwd
->gb
, pwd
->frame_len_bits
);
960 } else { /* normal code */
961 run
= run_table
[code
];
962 level
= level_table
[code
];
964 if (!get_bit(&pwd
->gb
))
968 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
972 if (ptr
>= eptr
) /* EOB can be omitted */
976 compute_mdct_coefficients(pwd
, bsize
, total_gain
, nb_coefs
);
977 if (pwd
->ms_stereo
&& pwd
->channel_coded
[1]) {
981 * Nominal case for ms stereo: we do it before mdct.
983 * No need to optimize this case because it should almost never
986 if (!pwd
->channel_coded
[0]) {
987 PARA_NOTICE_LOG("rare ms-stereo\n");
988 memset(pwd
->coefs
[0], 0, sizeof(float) * pwd
->block_len
);
989 pwd
->channel_coded
[0] = 1;
991 for (i
= 0; i
< pwd
->block_len
; i
++) {
992 a
= pwd
->coefs
[0][i
];
993 b
= pwd
->coefs
[1][i
];
994 pwd
->coefs
[0][i
] = a
+ b
;
995 pwd
->coefs
[1][i
] = a
- b
;
999 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
1003 n4
= pwd
->block_len
/ 2;
1004 if (pwd
->channel_coded
[ch
])
1005 imdct(pwd
->mdct_ctx
[bsize
], pwd
->output
, pwd
->coefs
[ch
]);
1006 else if (!(pwd
->ms_stereo
&& ch
== 1))
1007 memset(pwd
->output
, 0, sizeof(pwd
->output
));
1009 /* multiply by the window and add in the frame */
1010 index
= (pwd
->frame_len
/ 2) + pwd
->block_pos
- n4
;
1011 wma_window(pwd
, &pwd
->frame_out
[ch
][index
]);
1014 /* update block number */
1015 pwd
->block_pos
+= pwd
->block_len
;
1016 if (pwd
->block_pos
>= pwd
->frame_len
)
1023 * Clip a signed integer value into the -32768,32767 range.
1025 * \param a The value to clip.
1027 * \return The clipped value.
1029 static inline int16_t av_clip_int16(int a
)
1031 if ((a
+ 32768) & ~65535)
1032 return (a
>> 31) ^ 32767;
1037 /* Decode a frame of frame_len samples. */
1038 static int wma_decode_frame(struct private_wmadec_data
*pwd
, int16_t *samples
)
1040 int ret
, i
, n
, ch
, incr
;
1044 /* read each block */
1047 ret
= wma_decode_block(pwd
);
1054 /* convert frame to integer */
1056 incr
= pwd
->ahi
.channels
;
1057 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
1059 iptr
= pwd
->frame_out
[ch
];
1061 for (i
= 0; i
< n
; i
++) {
1062 *ptr
= av_clip_int16(lrintf(*iptr
++));
1065 /* prepare for next block */
1066 memmove(&pwd
->frame_out
[ch
][0], &pwd
->frame_out
[ch
][pwd
->frame_len
],
1067 pwd
->frame_len
* sizeof(float));
1072 static int wma_decode_superframe(struct private_wmadec_data
*pwd
, void *data
,
1073 int *data_size
, const uint8_t *buf
, int buf_size
)
1077 static int frame_count
;
1079 if (buf_size
== 0) {
1080 pwd
->last_superframe_len
= 0;
1083 if (buf_size
< pwd
->ahi
.block_align
)
1085 buf_size
= pwd
->ahi
.block_align
;
1087 init_get_bits(&pwd
->gb
, buf
, buf_size
);
1088 if (pwd
->use_bit_reservoir
) {
1089 int i
, nb_frames
, bit_offset
, pos
, len
;
1092 /* read super frame header */
1093 skip_bits(&pwd
->gb
, 4); /* super frame index */
1094 nb_frames
= get_bits(&pwd
->gb
, 4) - 1;
1095 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1096 ret
= -E_WMA_OUTPUT_SPACE
;
1097 if ((nb_frames
+ 1) * pwd
->ahi
.channels
* pwd
->frame_len
1098 * sizeof(int16_t) > *data_size
)
1101 bit_offset
= get_bits(&pwd
->gb
, pwd
->byte_offset_bits
+ 3);
1103 if (pwd
->last_superframe_len
> 0) {
1104 /* add bit_offset bits to last frame */
1105 ret
= -E_WMA_BAD_SUPERFRAME
;
1106 if ((pwd
->last_superframe_len
+ ((bit_offset
+ 7) >> 3)) >
1107 MAX_CODED_SUPERFRAME_SIZE
)
1109 q
= pwd
->last_superframe
+ pwd
->last_superframe_len
;
1112 *q
++ = get_bits(&pwd
->gb
, 8);
1116 *q
++ = get_bits(&pwd
->gb
, len
) << (8 - len
);
1118 /* XXX: bit_offset bits into last frame */
1119 init_get_bits(&pwd
->gb
, pwd
->last_superframe
,
1120 MAX_CODED_SUPERFRAME_SIZE
);
1121 /* skip unused bits */
1122 if (pwd
->last_bitoffset
> 0)
1123 skip_bits(&pwd
->gb
, pwd
->last_bitoffset
);
1125 * This frame is stored in the last superframe and in
1128 ret
= -E_WMA_DECODE
;
1129 if (wma_decode_frame(pwd
, samples
) < 0)
1132 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1135 /* read each frame starting from bit_offset */
1136 pos
= bit_offset
+ 4 + 4 + pwd
->byte_offset_bits
+ 3;
1137 init_get_bits(&pwd
->gb
, buf
+ (pos
>> 3),
1138 (MAX_CODED_SUPERFRAME_SIZE
- (pos
>> 3)));
1141 skip_bits(&pwd
->gb
, len
);
1143 pwd
->reset_block_lengths
= 1;
1144 for (i
= 0; i
< nb_frames
; i
++) {
1145 ret
= -E_WMA_DECODE
;
1146 if (wma_decode_frame(pwd
, samples
) < 0)
1149 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1152 /* we copy the end of the frame in the last frame buffer */
1153 pos
= get_bits_count(&pwd
->gb
) +
1154 ((bit_offset
+ 4 + 4 + pwd
->byte_offset_bits
+ 3) & ~7);
1155 pwd
->last_bitoffset
= pos
& 7;
1157 len
= buf_size
- pos
;
1158 ret
= -E_WMA_BAD_SUPERFRAME
;
1159 if (len
> MAX_CODED_SUPERFRAME_SIZE
|| len
< 0)
1161 pwd
->last_superframe_len
= len
;
1162 memcpy(pwd
->last_superframe
, buf
+ pos
, len
);
1164 PARA_DEBUG_LOG("not using bit reservoir\n");
1165 ret
= -E_WMA_OUTPUT_SPACE
;
1166 if (pwd
->ahi
.channels
* pwd
->frame_len
* sizeof(int16_t) > *data_size
)
1168 /* single frame decode */
1169 ret
= -E_WMA_DECODE
;
1170 if (wma_decode_frame(pwd
, samples
) < 0)
1173 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1175 PARA_DEBUG_LOG("frame_count: %d frame_len: %d, block_len: %d, "
1176 "outbytes: %zd, eaten: %d\n",
1177 frame_count
, pwd
->frame_len
, pwd
->block_len
,
1178 (int8_t *) samples
- (int8_t *) data
, pwd
->ahi
.block_align
);
1179 *data_size
= (int8_t *)samples
- (int8_t *)data
;
1180 return pwd
->ahi
.block_align
;
1182 /* reset the bit reservoir on errors */
1183 pwd
->last_superframe_len
= 0;
1187 static ssize_t
wmadec_convert(char *inbuffer
, size_t len
,
1188 struct filter_node
*fn
)
1190 int ret
, converted
= 0;
1191 struct private_wmadec_data
*pwd
= fn
->private_data
;
1193 if (len
<= WMA_FRAME_SKIP
)
1196 ret
= wma_decode_init(inbuffer
, len
, &pwd
);
1199 fn
->private_data
= pwd
;
1200 fn
->fc
->channels
= pwd
->ahi
.channels
;
1201 fn
->fc
->samplerate
= pwd
->ahi
.sample_rate
;
1202 return pwd
->ahi
.header_len
;
1206 if (converted
+ WMA_FRAME_SKIP
+ pwd
->ahi
.block_align
> len
)
1208 out_size
= fn
->bufsize
- fn
->loaded
;
1209 if (out_size
< 128 * 1024)
1211 ret
= wma_decode_superframe(pwd
, fn
->buf
+ fn
->loaded
,
1212 &out_size
, (uint8_t *)inbuffer
+ converted
+ WMA_FRAME_SKIP
,
1213 len
- WMA_FRAME_SKIP
);
1216 fn
->loaded
+= out_size
;
1217 converted
+= ret
+ WMA_FRAME_SKIP
;
1222 static void wmadec_close(struct filter_node
*fn
)
1224 struct private_wmadec_data
*pwd
= fn
->private_data
;
1228 wmadec_cleanup(pwd
);
1231 free(fn
->private_data
);
1232 fn
->private_data
= NULL
;
1235 static void wmadec_open(struct filter_node
*fn
)
1237 fn
->bufsize
= 1024 * 1024;
1238 fn
->buf
= para_malloc(fn
->bufsize
);
1239 fn
->private_data
= NULL
;
1244 * The init function of the wma decoder.
1246 * \param f Its fields are filled in by the function.
1248 void wmadec_filter_init(struct filter
*f
)
1250 f
->open
= wmadec_open
;
1251 f
->close
= wmadec_close
;
1252 f
->convert
= wmadec_convert
;