2 * WMA compatible decoder
4 * Extracted 2009 from the mplayer source code 2009-02-10.
6 * Copyright (c) 2002 The FFmpeg Project
8 * Licensed under the GNU Lesser General Public License.
9 * For licencing details see COPYING.LIB.
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
15 * This decoder handles Microsoft Windows Media Audio data version 2.
18 #define _XOPEN_SOURCE 600
27 #include <sys/select.h>
36 #include "bitstream.h"
43 #define BLOCK_MIN_BITS 7
44 #define BLOCK_MAX_BITS 11
45 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
47 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
49 /* XXX: find exact max size */
50 #define HIGH_BAND_MAX_SIZE 16
52 /* XXX: is it a suitable value ? */
53 #define MAX_CODED_SUPERFRAME_SIZE 16384
55 #define MAX_CHANNELS 2
57 #define NOISE_TAB_SIZE 8192
59 #define LSP_POW_BITS 7
61 struct private_wmadec_data
{
62 /** Information contained in the audio file header. */
63 struct asf_header_info ahi
;
64 struct getbit_context gb
;
65 /** Whether to use the bit reservoir. */
66 int use_bit_reservoir
;
67 /** Whether to use variable block length. */
68 int use_variable_block_len
;
69 /** Whether to use exponent coding. */
71 /** Whether perceptual noise is added. */
75 int exponent_sizes
[BLOCK_NB_SIZES
];
76 uint16_t exponent_bands
[BLOCK_NB_SIZES
][25];
77 /** The index of the first coef in high band. */
78 int high_band_start
[BLOCK_NB_SIZES
];
79 /** Maximal number of coded coefficients. */
80 int coefs_end
[BLOCK_NB_SIZES
];
81 int exponent_high_sizes
[BLOCK_NB_SIZES
];
82 int exponent_high_bands
[BLOCK_NB_SIZES
][HIGH_BAND_MAX_SIZE
];
85 /* coded values in high bands */
86 int high_band_coded
[MAX_CHANNELS
][HIGH_BAND_MAX_SIZE
];
87 int high_band_values
[MAX_CHANNELS
][HIGH_BAND_MAX_SIZE
];
89 /* there are two possible tables for spectral coefficients */
90 struct vlc coef_vlc
[2];
91 uint16_t *run_table
[2];
92 uint16_t *level_table
[2];
93 const struct coef_vlc_table
*coef_vlcs
[2];
94 /** Frame length in samples. */
96 /** log2 of frame_len. */
98 /** Number of block sizes. */
101 int reset_block_lengths
;
102 /** log2 of current block length. */
104 /** log2 of next block length. */
105 int next_block_len_bits
;
106 /** log2 of previous block length. */
107 int prev_block_len_bits
;
108 /** Block length in samples. */
110 /** Current position in frame. */
112 /** True if mid/side stereo mode. */
114 /** True if channel is coded. */
115 uint8_t channel_coded
[MAX_CHANNELS
];
116 /** log2 ratio frame/exp. length. */
117 int exponents_bsize
[MAX_CHANNELS
];
119 float exponents
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
120 float max_exponent
[MAX_CHANNELS
];
121 int16_t coefs1
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
122 float coefs
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
123 float output
[BLOCK_MAX_SIZE
* 2];
124 struct mdct_context
*mdct_ctx
[BLOCK_NB_SIZES
];
125 float *windows
[BLOCK_NB_SIZES
];
126 /** Output buffer for one frame and the last for IMDCT windowing. */
127 float frame_out
[MAX_CHANNELS
][BLOCK_MAX_SIZE
* 2];
128 /** Last frame info. */
129 uint8_t last_superframe
[MAX_CODED_SUPERFRAME_SIZE
+ 4]; /* padding added */
131 int last_superframe_len
;
132 float noise_table
[NOISE_TAB_SIZE
];
134 float noise_mult
; /* XXX: suppress that and integrate it in the noise array */
135 /* lsp_to_curve tables */
136 float lsp_cos_table
[BLOCK_MAX_SIZE
];
137 float lsp_pow_e_table
[256];
138 float lsp_pow_m_table1
[(1 << LSP_POW_BITS
)];
139 float lsp_pow_m_table2
[(1 << LSP_POW_BITS
)];
143 #define EXPMAX ((19 + EXPVLCBITS - 1) / EXPVLCBITS)
145 #define HGAINVLCBITS 9
146 #define HGAINMAX ((13 + HGAINVLCBITS - 1) / HGAINVLCBITS)
149 #define VLCMAX ((22 + VLCBITS - 1) / VLCBITS)
151 #define SINE_WINDOW(x) float sine_ ## x[x] __a_aligned(16)
160 static float *sine_windows
[6] = {
161 sine_128
, sine_256
, sine_512
, sine_1024
, sine_2048
, sine_4096
164 /* Generate a sine window. */
165 static void sine_window_init(float *window
, int n
)
169 for (i
= 0; i
< n
; i
++)
170 window
[i
] = sinf((i
+ 0.5) * (M_PI
/ (2.0 * n
)));
173 static void wmadec_cleanup(struct private_wmadec_data
*pwd
)
177 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++)
178 imdct_end(pwd
->mdct_ctx
[i
]);
179 if (pwd
->use_exp_vlc
)
180 free_vlc(&pwd
->exp_vlc
);
181 if (pwd
->use_noise_coding
)
182 free_vlc(&pwd
->hgain_vlc
);
183 for (i
= 0; i
< 2; i
++) {
184 free_vlc(&pwd
->coef_vlc
[i
]);
185 free(pwd
->run_table
[i
]);
186 free(pwd
->level_table
[i
]);
190 static void init_coef_vlc(struct vlc
*vlc
, uint16_t **prun_table
,
191 uint16_t **plevel_table
, const struct coef_vlc_table
*vlc_table
)
193 int n
= vlc_table
->n
;
194 const uint8_t *table_bits
= vlc_table
->huffbits
;
195 const uint32_t *table_codes
= vlc_table
->huffcodes
;
196 const uint16_t *levels_table
= vlc_table
->levels
;
197 uint16_t *run_table
, *level_table
;
198 int i
, l
, j
, k
, level
;
200 init_vlc(vlc
, VLCBITS
, n
, table_bits
, table_codes
, 4);
202 run_table
= para_malloc(n
* sizeof(uint16_t));
203 level_table
= para_malloc(n
* sizeof(uint16_t));
208 l
= levels_table
[k
++];
209 for (j
= 0; j
< l
; j
++) {
211 level_table
[i
] = level
;
216 *prun_table
= run_table
;
217 *plevel_table
= level_table
;
220 /* compute the scale factor band sizes for each MDCT block size */
221 static void compute_scale_factor_band_sizes(struct private_wmadec_data
*pwd
,
224 struct asf_header_info
*ahi
= &pwd
->ahi
;
225 int a
, b
, pos
, lpos
, k
, block_len
, i
, j
, n
;
226 const uint8_t *table
;
228 for (k
= 0; k
< pwd
->nb_block_sizes
; k
++) {
229 block_len
= pwd
->frame_len
>> k
;
232 a
= pwd
->frame_len_bits
- BLOCK_MIN_BITS
- k
;
234 if (ahi
->sample_rate
>= 44100)
235 table
= exponent_band_44100
[a
];
236 else if (ahi
->sample_rate
>= 32000)
237 table
= exponent_band_32000
[a
];
238 else if (ahi
->sample_rate
>= 22050)
239 table
= exponent_band_22050
[a
];
243 for (i
= 0; i
< n
; i
++)
244 pwd
->exponent_bands
[k
][i
] = table
[i
];
245 pwd
->exponent_sizes
[k
] = n
;
249 for (i
= 0; i
< 25; i
++) {
250 a
= wma_critical_freqs
[i
];
251 b
= ahi
->sample_rate
;
252 pos
= ((block_len
* 2 * a
) + (b
<< 1)) / (4 * b
);
257 pwd
->exponent_bands
[k
][j
++] = pos
- lpos
;
258 if (pos
>= block_len
)
262 pwd
->exponent_sizes
[k
] = j
;
265 /* max number of coefs */
266 pwd
->coefs_end
[k
] = (pwd
->frame_len
- ((pwd
->frame_len
* 9) / 100)) >> k
;
267 /* high freq computation */
268 pwd
->high_band_start
[k
] = (int) ((block_len
* 2 * high_freq
)
269 / ahi
->sample_rate
+ 0.5);
270 n
= pwd
->exponent_sizes
[k
];
273 for (i
= 0; i
< n
; i
++) {
276 pos
+= pwd
->exponent_bands
[k
][i
];
278 if (start
< pwd
->high_band_start
[k
])
279 start
= pwd
->high_band_start
[k
];
280 if (end
> pwd
->coefs_end
[k
])
281 end
= pwd
->coefs_end
[k
];
283 pwd
->exponent_high_bands
[k
][j
++] = end
- start
;
285 pwd
->exponent_high_sizes
[k
] = j
;
289 static int wma_init(struct private_wmadec_data
*pwd
)
292 float bps1
, high_freq
;
296 struct asf_header_info
*ahi
= &pwd
->ahi
;
297 int flags2
= ahi
->flags2
;
299 if (ahi
->sample_rate
<= 0 || ahi
->sample_rate
> 50000
300 || ahi
->channels
<= 0 || ahi
->channels
> 8
301 || ahi
->bit_rate
<= 0)
302 return -E_WMA_BAD_PARAMS
;
304 /* compute MDCT block size */
305 if (ahi
->sample_rate
<= 16000)
306 pwd
->frame_len_bits
= 9;
307 else if (ahi
->sample_rate
<= 22050)
308 pwd
->frame_len_bits
= 10;
310 pwd
->frame_len_bits
= 11;
311 pwd
->frame_len
= 1 << pwd
->frame_len_bits
;
312 if (pwd
->use_variable_block_len
) {
314 nb
= ((flags2
>> 3) & 3) + 1;
315 if ((ahi
->bit_rate
/ ahi
->channels
) >= 32000)
317 nb_max
= pwd
->frame_len_bits
- BLOCK_MIN_BITS
;
320 pwd
->nb_block_sizes
= nb
+ 1;
322 pwd
->nb_block_sizes
= 1;
324 /* init rate dependent parameters */
325 pwd
->use_noise_coding
= 1;
326 high_freq
= ahi
->sample_rate
* 0.5;
328 /* wma2 rates are normalized */
329 sample_rate1
= ahi
->sample_rate
;
330 if (sample_rate1
>= 44100)
331 sample_rate1
= 44100;
332 else if (sample_rate1
>= 22050)
333 sample_rate1
= 22050;
334 else if (sample_rate1
>= 16000)
335 sample_rate1
= 16000;
336 else if (sample_rate1
>= 11025)
337 sample_rate1
= 11025;
338 else if (sample_rate1
>= 8000)
341 bps
= (float) ahi
->bit_rate
/ (float) (ahi
->channels
* ahi
->sample_rate
);
342 pwd
->byte_offset_bits
= wma_log2((int) (bps
* pwd
->frame_len
/ 8.0 + 0.5)) + 2;
344 * Compute high frequency value and choose if noise coding should be
348 if (ahi
->channels
== 2)
350 if (sample_rate1
== 44100) {
352 pwd
->use_noise_coding
= 0;
354 high_freq
= high_freq
* 0.4;
355 } else if (sample_rate1
== 22050) {
357 pwd
->use_noise_coding
= 0;
358 else if (bps1
>= 0.72)
359 high_freq
= high_freq
* 0.7;
361 high_freq
= high_freq
* 0.6;
362 } else if (sample_rate1
== 16000) {
364 high_freq
= high_freq
* 0.5;
366 high_freq
= high_freq
* 0.3;
367 } else if (sample_rate1
== 11025)
368 high_freq
= high_freq
* 0.7;
369 else if (sample_rate1
== 8000) {
371 high_freq
= high_freq
* 0.5;
373 pwd
->use_noise_coding
= 0;
375 high_freq
= high_freq
* 0.65;
378 high_freq
= high_freq
* 0.75;
380 high_freq
= high_freq
* 0.6;
382 high_freq
= high_freq
* 0.5;
384 PARA_INFO_LOG("channels=%d sample_rate=%d "
385 "bitrate=%d block_align=%d\n",
386 ahi
->channels
, ahi
->sample_rate
,
387 ahi
->bit_rate
, ahi
->block_align
);
388 PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
389 "high_freq=%f bitoffset=%d\n",
390 pwd
->frame_len
, bps
, bps1
,
391 high_freq
, pwd
->byte_offset_bits
);
392 PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
393 pwd
->use_noise_coding
, pwd
->use_exp_vlc
, pwd
->nb_block_sizes
);
395 compute_scale_factor_band_sizes(pwd
, high_freq
);
396 /* init MDCT windows : simple sinus window */
397 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++) {
399 n
= 1 << (pwd
->frame_len_bits
- i
);
400 sine_window_init(sine_windows
[pwd
->frame_len_bits
- i
- 7], n
);
401 pwd
->windows
[i
] = sine_windows
[pwd
->frame_len_bits
- i
- 7];
404 pwd
->reset_block_lengths
= 1;
406 if (pwd
->use_noise_coding
) {
407 /* init the noise generator */
408 if (pwd
->use_exp_vlc
)
409 pwd
->noise_mult
= 0.02;
411 pwd
->noise_mult
= 0.04;
417 norm
= (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd
->noise_mult
;
418 for (i
= 0; i
< NOISE_TAB_SIZE
; i
++) {
419 seed
= seed
* 314159 + 1;
420 pwd
->noise_table
[i
] = (float) ((int) seed
) * norm
;
425 /* choose the VLC tables for the coefficients */
427 if (ahi
->sample_rate
>= 32000) {
430 else if (bps1
< 1.16)
433 pwd
->coef_vlcs
[0] = &coef_vlcs
[coef_vlc_table
* 2];
434 pwd
->coef_vlcs
[1] = &coef_vlcs
[coef_vlc_table
* 2 + 1];
435 init_coef_vlc(&pwd
->coef_vlc
[0], &pwd
->run_table
[0], &pwd
->level_table
[0],
437 init_coef_vlc(&pwd
->coef_vlc
[1], &pwd
->run_table
[1], &pwd
->level_table
[1],
442 static void wma_lsp_to_curve_init(struct private_wmadec_data
*pwd
, int frame_len
)
447 wdel
= M_PI
/ frame_len
;
448 for (i
= 0; i
< frame_len
; i
++)
449 pwd
->lsp_cos_table
[i
] = 2.0f
* cos(wdel
* i
);
451 /* tables for x^-0.25 computation */
452 for (i
= 0; i
< 256; i
++) {
454 pwd
->lsp_pow_e_table
[i
] = pow(2.0, e
* -0.25);
457 /* These two tables are needed to avoid two operations in pow_m1_4. */
459 for (i
= (1 << LSP_POW_BITS
) - 1; i
>= 0; i
--) {
460 m
= (1 << LSP_POW_BITS
) + i
;
461 a
= (float) m
*(0.5 / (1 << LSP_POW_BITS
));
463 pwd
->lsp_pow_m_table1
[i
] = 2 * a
- b
;
464 pwd
->lsp_pow_m_table2
[i
] = b
- a
;
469 static int wma_decode_init(char *initial_buf
, int len
, struct private_wmadec_data
**result
)
471 struct private_wmadec_data
*pwd
;
474 PARA_NOTICE_LOG("initial buf: %d bytes\n", len
);
475 pwd
= para_calloc(sizeof(*pwd
));
476 ret
= read_asf_header(initial_buf
, len
, &pwd
->ahi
);
482 pwd
->use_exp_vlc
= pwd
->ahi
.flags2
& 0x0001;
483 pwd
->use_bit_reservoir
= pwd
->ahi
.flags2
& 0x0002;
484 pwd
->use_variable_block_len
= pwd
->ahi
.flags2
& 0x0004;
490 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++) {
491 ret
= imdct_init(pwd
->frame_len_bits
- i
+ 1, &pwd
->mdct_ctx
[i
]);
495 if (pwd
->use_noise_coding
) {
496 PARA_INFO_LOG("using noise coding\n");
497 init_vlc(&pwd
->hgain_vlc
, HGAINVLCBITS
,
498 sizeof(wma_hgain_huffbits
), wma_hgain_huffbits
,
499 wma_hgain_huffcodes
, 2);
502 if (pwd
->use_exp_vlc
) {
503 PARA_INFO_LOG("using exp_vlc\n");
504 init_vlc(&pwd
->exp_vlc
, EXPVLCBITS
,
505 sizeof(wma_scale_huffbits
), wma_scale_huffbits
,
506 wma_scale_huffcodes
, 4);
508 PARA_INFO_LOG("using curve\n");
509 wma_lsp_to_curve_init(pwd
, pwd
->frame_len
);
512 return pwd
->ahi
.header_len
;
516 * compute x^-0.25 with an exponent and mantissa table. We use linear
517 * interpolation to reduce the mantissa table size at a small speed
518 * expense (linear interpolation approximately doubles the number of
519 * bits of precision).
521 static inline float pow_m1_4(struct private_wmadec_data
*pwd
, float x
)
532 m
= (u
.v
>> (23 - LSP_POW_BITS
)) & ((1 << LSP_POW_BITS
) - 1);
533 /* build interpolation scale: 1 <= t < 2. */
534 t
.v
= ((u
.v
<< LSP_POW_BITS
) & ((1 << 23) - 1)) | (127 << 23);
535 a
= pwd
->lsp_pow_m_table1
[m
];
536 b
= pwd
->lsp_pow_m_table2
[m
];
537 return pwd
->lsp_pow_e_table
[e
] * (a
+ b
* t
.f
);
540 static void wma_lsp_to_curve(struct private_wmadec_data
*pwd
,
541 float *out
, float *val_max_ptr
, int n
, float *lsp
)
544 float p
, q
, w
, v
, val_max
;
547 for (i
= 0; i
< n
; i
++) {
550 w
= pwd
->lsp_cos_table
[i
];
551 for (j
= 1; j
< NB_LSP_COEFS
; j
+= 2) {
558 v
= pow_m1_4(pwd
, v
);
563 *val_max_ptr
= val_max
;
566 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
567 static void decode_exp_lsp(struct private_wmadec_data
*pwd
, int ch
)
569 float lsp_coefs
[NB_LSP_COEFS
];
572 for (i
= 0; i
< NB_LSP_COEFS
; i
++) {
573 if (i
== 0 || i
>= 8)
574 val
= get_bits(&pwd
->gb
, 3);
576 val
= get_bits(&pwd
->gb
, 4);
577 lsp_coefs
[i
] = wma_lsp_codebook
[i
][val
];
580 wma_lsp_to_curve(pwd
, pwd
->exponents
[ch
], &pwd
->max_exponent
[ch
],
581 pwd
->block_len
, lsp_coefs
);
584 /* Decode exponents coded with VLC codes. */
585 static int decode_exp_vlc(struct private_wmadec_data
*pwd
, int ch
)
587 int last_exp
, n
, code
;
588 const uint16_t *ptr
, *band_ptr
;
589 float v
, *q
, max_scale
, *q_end
;
591 band_ptr
= pwd
->exponent_bands
[pwd
->frame_len_bits
- pwd
->block_len_bits
];
593 q
= pwd
->exponents
[ch
];
594 q_end
= q
+ pwd
->block_len
;
599 code
= get_vlc(&pwd
->gb
, pwd
->exp_vlc
.table
, EXPVLCBITS
, EXPMAX
);
602 /* NOTE: this offset is the same as MPEG4 AAC ! */
603 last_exp
+= code
- 60;
604 /* XXX: use a table */
605 v
= pow(10, last_exp
* (1.0 / 16.0));
613 pwd
->max_exponent
[ch
] = max_scale
;
617 /* compute src0 * src1 + src2 */
618 static inline void vector_mult_add(float *dst
, const float *src0
, const float *src1
,
619 const float *src2
, int len
)
623 for (i
= 0; i
< len
; i
++)
624 dst
[i
] = src0
[i
] * src1
[i
] + src2
[i
];
627 static inline void vector_mult_reverse(float *dst
, const float *src0
,
628 const float *src1
, int len
)
633 for (i
= 0; i
< len
; i
++)
634 dst
[i
] = src0
[i
] * src1
[-i
];
638 * Apply MDCT window and add into output.
640 * We ensure that when the windows overlap their squared sum
641 * is always 1 (MDCT reconstruction rule).
643 static void wma_window(struct private_wmadec_data
*pwd
, float *out
)
645 float *in
= pwd
->output
;
646 int block_len
, bsize
, n
;
649 if (pwd
->block_len_bits
<= pwd
->prev_block_len_bits
) {
650 block_len
= pwd
->block_len
;
651 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
652 vector_mult_add(out
, in
, pwd
->windows
[bsize
], out
, block_len
);
654 block_len
= 1 << pwd
->prev_block_len_bits
;
655 n
= (pwd
->block_len
- block_len
) / 2;
656 bsize
= pwd
->frame_len_bits
- pwd
->prev_block_len_bits
;
657 vector_mult_add(out
+ n
, in
+ n
, pwd
->windows
[bsize
], out
+ n
,
659 memcpy(out
+ n
+ block_len
, in
+ n
+ block_len
,
662 out
+= pwd
->block_len
;
663 in
+= pwd
->block_len
;
665 if (pwd
->block_len_bits
<= pwd
->next_block_len_bits
) {
666 block_len
= pwd
->block_len
;
667 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
668 vector_mult_reverse(out
, in
, pwd
->windows
[bsize
], block_len
);
670 block_len
= 1 << pwd
->next_block_len_bits
;
671 n
= (pwd
->block_len
- block_len
) / 2;
672 bsize
= pwd
->frame_len_bits
- pwd
->next_block_len_bits
;
673 memcpy(out
, in
, n
* sizeof(float));
674 vector_mult_reverse(out
+ n
, in
+ n
, pwd
->windows
[bsize
],
676 memset(out
+ n
+ block_len
, 0, n
* sizeof(float));
680 static int wma_total_gain_to_bits(int total_gain
)
684 else if (total_gain
< 32)
686 else if (total_gain
< 40)
688 else if (total_gain
< 45)
694 static int compute_high_band_values(struct private_wmadec_data
*pwd
,
695 int bsize
, int nb_coefs
[MAX_CHANNELS
])
699 if (!pwd
->use_noise_coding
)
701 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
703 if (!pwd
->channel_coded
[ch
])
705 m
= pwd
->exponent_high_sizes
[bsize
];
706 for (i
= 0; i
< m
; i
++) {
707 a
= get_bit(&pwd
->gb
);
708 pwd
->high_band_coded
[ch
][i
] = a
;
711 nb_coefs
[ch
] -= pwd
->exponent_high_bands
[bsize
][i
];
714 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
716 if (!pwd
->channel_coded
[ch
])
718 n
= pwd
->exponent_high_sizes
[bsize
];
719 val
= (int)0x80000000;
720 for (i
= 0; i
< n
; i
++) {
721 if (!pwd
->high_band_coded
[ch
][i
])
723 if (val
== (int)0x80000000)
724 val
= get_bits(&pwd
->gb
, 7) - 19;
726 int code
= get_vlc(&pwd
->gb
,
727 pwd
->hgain_vlc
.table
, HGAINVLCBITS
,
733 pwd
->high_band_values
[ch
][i
] = val
;
739 static void compute_mdct_coefficients(struct private_wmadec_data
*pwd
,
740 int bsize
, int total_gain
, int nb_coefs
[MAX_CHANNELS
])
743 float mdct_norm
= 1.0 / (pwd
->block_len
/ 2);
745 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
747 float *coefs
, *exponents
, mult
, mult1
, noise
;
748 int i
, j
, n
, n1
, last_high_band
, esize
;
749 float exp_power
[HIGH_BAND_MAX_SIZE
];
751 if (!pwd
->channel_coded
[ch
])
753 coefs1
= pwd
->coefs1
[ch
];
754 exponents
= pwd
->exponents
[ch
];
755 esize
= pwd
->exponents_bsize
[ch
];
756 mult
= pow(10, total_gain
* 0.05) / pwd
->max_exponent
[ch
];
758 coefs
= pwd
->coefs
[ch
];
759 if (!pwd
->use_noise_coding
) {
760 /* XXX: optimize more */
762 for (i
= 0; i
< n
; i
++)
763 *coefs
++ = coefs1
[i
] *
764 exponents
[i
<< bsize
>> esize
] * mult
;
765 n
= pwd
->block_len
- pwd
->coefs_end
[bsize
];
766 for (i
= 0; i
< n
; i
++)
771 n1
= pwd
->exponent_high_sizes
[bsize
];
772 /* compute power of high bands */
773 exponents
= pwd
->exponents
[ch
] +
774 (pwd
->high_band_start
[bsize
] << bsize
);
775 last_high_band
= 0; /* avoid warning */
776 for (j
= 0; j
< n1
; j
++) {
777 n
= pwd
->exponent_high_bands
[
778 pwd
->frame_len_bits
- pwd
->block_len_bits
][j
];
779 if (pwd
->high_band_coded
[ch
][j
]) {
782 for (i
= 0; i
< n
; i
++) {
783 val
= exponents
[i
<< bsize
>> esize
];
786 exp_power
[j
] = e2
/ n
;
789 exponents
+= n
<< bsize
;
791 /* main freqs and high freqs */
792 exponents
= pwd
->exponents
[ch
];
793 for (j
= -1; j
< n1
; j
++) {
795 n
= pwd
->high_band_start
[bsize
];
797 n
= pwd
->exponent_high_bands
[pwd
->frame_len_bits
798 - pwd
->block_len_bits
][j
];
799 if (j
>= 0 && pwd
->high_band_coded
[ch
][j
]) {
800 /* use noise with specified power */
801 mult1
= sqrt(exp_power
[j
]
802 / exp_power
[last_high_band
]);
803 /* XXX: use a table */
804 mult1
= mult1
* pow(10,
805 pwd
->high_band_values
[ch
][j
] * 0.05);
806 mult1
/= (pwd
->max_exponent
[ch
] * pwd
->noise_mult
);
808 for (i
= 0; i
< n
; i
++) {
809 noise
= pwd
->noise_table
[pwd
->noise_index
];
810 pwd
->noise_index
= (pwd
->noise_index
+ 1)
811 & (NOISE_TAB_SIZE
- 1);
812 *coefs
++ = noise
* exponents
[
813 i
<< bsize
>> esize
] * mult1
;
815 exponents
+= n
<< bsize
;
817 /* coded values + small noise */
818 for (i
= 0; i
< n
; i
++) {
819 noise
= pwd
->noise_table
[pwd
->noise_index
];
820 pwd
->noise_index
= (pwd
->noise_index
+ 1)
821 & (NOISE_TAB_SIZE
- 1);
822 *coefs
++ = ((*coefs1
++) + noise
) *
823 exponents
[i
<< bsize
>> esize
]
826 exponents
+= n
<< bsize
;
829 /* very high freqs: noise */
830 n
= pwd
->block_len
- pwd
->coefs_end
[bsize
];
831 mult1
= mult
* exponents
[((-1 << bsize
)) >> esize
];
832 for (i
= 0; i
< n
; i
++) {
833 *coefs
++ = pwd
->noise_table
[pwd
->noise_index
] * mult1
;
834 pwd
->noise_index
= (pwd
->noise_index
+ 1)
835 & (NOISE_TAB_SIZE
- 1);
841 * Returns 0 if OK, 1 if last block of frame, negative on uncorrectable
844 static int wma_decode_block(struct private_wmadec_data
*pwd
)
846 int ret
, n
, v
, ch
, code
, bsize
;
847 int coef_nb_bits
, total_gain
;
848 int nb_coefs
[MAX_CHANNELS
];
850 /* compute current block length */
851 if (pwd
->use_variable_block_len
) {
852 n
= wma_log2(pwd
->nb_block_sizes
- 1) + 1;
854 if (pwd
->reset_block_lengths
) {
855 pwd
->reset_block_lengths
= 0;
856 v
= get_bits(&pwd
->gb
, n
);
857 if (v
>= pwd
->nb_block_sizes
)
858 return -E_WMA_BLOCK_SIZE
;
859 pwd
->prev_block_len_bits
= pwd
->frame_len_bits
- v
;
860 v
= get_bits(&pwd
->gb
, n
);
861 if (v
>= pwd
->nb_block_sizes
)
862 return -E_WMA_BLOCK_SIZE
;
863 pwd
->block_len_bits
= pwd
->frame_len_bits
- v
;
865 /* update block lengths */
866 pwd
->prev_block_len_bits
= pwd
->block_len_bits
;
867 pwd
->block_len_bits
= pwd
->next_block_len_bits
;
869 v
= get_bits(&pwd
->gb
, n
);
870 if (v
>= pwd
->nb_block_sizes
)
871 return -E_WMA_BLOCK_SIZE
;
872 pwd
->next_block_len_bits
= pwd
->frame_len_bits
- v
;
874 /* fixed block len */
875 pwd
->next_block_len_bits
= pwd
->frame_len_bits
;
876 pwd
->prev_block_len_bits
= pwd
->frame_len_bits
;
877 pwd
->block_len_bits
= pwd
->frame_len_bits
;
880 /* now check if the block length is coherent with the frame length */
881 pwd
->block_len
= 1 << pwd
->block_len_bits
;
882 if ((pwd
->block_pos
+ pwd
->block_len
) > pwd
->frame_len
)
883 return -E_INCOHERENT_BLOCK_LEN
;
885 if (pwd
->ahi
.channels
== 2)
886 pwd
->ms_stereo
= get_bit(&pwd
->gb
);
888 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
889 int a
= get_bit(&pwd
->gb
);
890 pwd
->channel_coded
[ch
] = a
;
894 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
896 /* if no channel coded, no need to go further */
897 /* XXX: fix potential framing problems */
902 * Read total gain and extract corresponding number of bits for coef
907 int a
= get_bits(&pwd
->gb
, 7);
913 coef_nb_bits
= wma_total_gain_to_bits(total_gain
);
915 /* compute number of coefficients */
916 n
= pwd
->coefs_end
[bsize
];
917 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++)
920 ret
= compute_high_band_values(pwd
, bsize
, nb_coefs
);
924 /* exponents can be reused in short blocks. */
925 if ((pwd
->block_len_bits
== pwd
->frame_len_bits
) || get_bit(&pwd
->gb
)) {
926 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
927 if (pwd
->channel_coded
[ch
]) {
928 if (pwd
->use_exp_vlc
) {
929 ret
= decode_exp_vlc(pwd
, ch
);
933 decode_exp_lsp(pwd
, ch
);
934 pwd
->exponents_bsize
[ch
] = bsize
;
939 /* parse spectral coefficients : just RLE encoding */
940 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
941 struct vlc
*coef_vlc
;
942 int level
, run
, tindex
;
944 const uint16_t *level_table
, *run_table
;
946 if (!pwd
->channel_coded
[ch
])
949 * special VLC tables are used for ms stereo because there is
950 * potentially less energy there
952 tindex
= (ch
== 1 && pwd
->ms_stereo
);
953 coef_vlc
= &pwd
->coef_vlc
[tindex
];
954 run_table
= pwd
->run_table
[tindex
];
955 level_table
= pwd
->level_table
[tindex
];
957 ptr
= &pwd
->coefs1
[ch
][0];
958 eptr
= ptr
+ nb_coefs
[ch
];
959 memset(ptr
, 0, pwd
->block_len
* sizeof(int16_t));
961 code
= get_vlc(&pwd
->gb
, coef_vlc
->table
,
965 if (code
== 1) /* EOB */
967 if (code
== 0) { /* escape */
968 level
= get_bits(&pwd
->gb
, coef_nb_bits
);
969 /* reading block_len_bits would be better */
970 run
= get_bits(&pwd
->gb
, pwd
->frame_len_bits
);
971 } else { /* normal code */
972 run
= run_table
[code
];
973 level
= level_table
[code
];
975 if (!get_bit(&pwd
->gb
))
979 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
983 if (ptr
>= eptr
) /* EOB can be omitted */
987 compute_mdct_coefficients(pwd
, bsize
, total_gain
, nb_coefs
);
988 if (pwd
->ms_stereo
&& pwd
->channel_coded
[1]) {
992 * Nominal case for ms stereo: we do it before mdct.
994 * No need to optimize this case because it should almost never
997 if (!pwd
->channel_coded
[0]) {
998 PARA_NOTICE_LOG("rare ms-stereo\n");
999 memset(pwd
->coefs
[0], 0, sizeof(float) * pwd
->block_len
);
1000 pwd
->channel_coded
[0] = 1;
1002 for (i
= 0; i
< pwd
->block_len
; i
++) {
1003 a
= pwd
->coefs
[0][i
];
1004 b
= pwd
->coefs
[1][i
];
1005 pwd
->coefs
[0][i
] = a
+ b
;
1006 pwd
->coefs
[1][i
] = a
- b
;
1010 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
1014 n4
= pwd
->block_len
/ 2;
1015 if (pwd
->channel_coded
[ch
])
1016 imdct(pwd
->mdct_ctx
[bsize
], pwd
->output
, pwd
->coefs
[ch
]);
1017 else if (!(pwd
->ms_stereo
&& ch
== 1))
1018 memset(pwd
->output
, 0, sizeof(pwd
->output
));
1020 /* multiply by the window and add in the frame */
1021 index
= (pwd
->frame_len
/ 2) + pwd
->block_pos
- n4
;
1022 wma_window(pwd
, &pwd
->frame_out
[ch
][index
]);
1025 /* update block number */
1026 pwd
->block_pos
+= pwd
->block_len
;
1027 if (pwd
->block_pos
>= pwd
->frame_len
)
1034 * Clip a signed integer value into the -32768,32767 range.
1036 * \param a The value to clip.
1038 * \return The clipped value.
1040 static inline int16_t av_clip_int16(int a
)
1042 if ((a
+ 32768) & ~65535)
1043 return (a
>> 31) ^ 32767;
1048 /* Decode a frame of frame_len samples. */
1049 static int wma_decode_frame(struct private_wmadec_data
*pwd
, int16_t *samples
)
1051 int ret
, i
, n
, ch
, incr
;
1055 /* read each block */
1058 ret
= wma_decode_block(pwd
);
1065 /* convert frame to integer */
1067 incr
= pwd
->ahi
.channels
;
1068 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
1070 iptr
= pwd
->frame_out
[ch
];
1072 for (i
= 0; i
< n
; i
++) {
1073 *ptr
= av_clip_int16(lrintf(*iptr
++));
1076 /* prepare for next block */
1077 memmove(&pwd
->frame_out
[ch
][0], &pwd
->frame_out
[ch
][pwd
->frame_len
],
1078 pwd
->frame_len
* sizeof(float));
1083 static int wma_decode_superframe(struct private_wmadec_data
*pwd
, void *data
,
1084 int *data_size
, const uint8_t *buf
, int buf_size
)
1089 if (buf_size
== 0) {
1090 pwd
->last_superframe_len
= 0;
1093 if (buf_size
< pwd
->ahi
.block_align
)
1095 buf_size
= pwd
->ahi
.block_align
;
1097 init_get_bits(&pwd
->gb
, buf
, buf_size
);
1098 if (pwd
->use_bit_reservoir
) {
1099 int i
, nb_frames
, bit_offset
, pos
, len
;
1102 /* read super frame header */
1103 skip_bits(&pwd
->gb
, 4); /* super frame index */
1104 nb_frames
= get_bits(&pwd
->gb
, 4) - 1;
1105 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1106 ret
= -E_WMA_OUTPUT_SPACE
;
1107 if ((nb_frames
+ 1) * pwd
->ahi
.channels
* pwd
->frame_len
1108 * sizeof(int16_t) > *data_size
)
1111 bit_offset
= get_bits(&pwd
->gb
, pwd
->byte_offset_bits
+ 3);
1113 if (pwd
->last_superframe_len
> 0) {
1114 /* add bit_offset bits to last frame */
1115 ret
= -E_WMA_BAD_SUPERFRAME
;
1116 if ((pwd
->last_superframe_len
+ ((bit_offset
+ 7) >> 3)) >
1117 MAX_CODED_SUPERFRAME_SIZE
)
1119 q
= pwd
->last_superframe
+ pwd
->last_superframe_len
;
1122 *q
++ = get_bits(&pwd
->gb
, 8);
1126 *q
++ = get_bits(&pwd
->gb
, len
) << (8 - len
);
1128 /* XXX: bit_offset bits into last frame */
1129 init_get_bits(&pwd
->gb
, pwd
->last_superframe
,
1130 MAX_CODED_SUPERFRAME_SIZE
);
1131 /* skip unused bits */
1132 if (pwd
->last_bitoffset
> 0)
1133 skip_bits(&pwd
->gb
, pwd
->last_bitoffset
);
1135 * This frame is stored in the last superframe and in
1138 ret
= wma_decode_frame(pwd
, samples
);
1141 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1144 /* read each frame starting from bit_offset */
1145 pos
= bit_offset
+ 4 + 4 + pwd
->byte_offset_bits
+ 3;
1146 init_get_bits(&pwd
->gb
, buf
+ (pos
>> 3),
1147 (MAX_CODED_SUPERFRAME_SIZE
- (pos
>> 3)));
1150 skip_bits(&pwd
->gb
, len
);
1152 pwd
->reset_block_lengths
= 1;
1153 for (i
= 0; i
< nb_frames
; i
++) {
1154 ret
= wma_decode_frame(pwd
, samples
);
1157 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1160 /* we copy the end of the frame in the last frame buffer */
1161 pos
= get_bits_count(&pwd
->gb
) +
1162 ((bit_offset
+ 4 + 4 + pwd
->byte_offset_bits
+ 3) & ~7);
1163 pwd
->last_bitoffset
= pos
& 7;
1165 len
= buf_size
- pos
;
1166 ret
= -E_WMA_BAD_SUPERFRAME
;
1167 if (len
> MAX_CODED_SUPERFRAME_SIZE
|| len
< 0)
1169 pwd
->last_superframe_len
= len
;
1170 memcpy(pwd
->last_superframe
, buf
+ pos
, len
);
1172 PARA_DEBUG_LOG("not using bit reservoir\n");
1173 ret
= -E_WMA_OUTPUT_SPACE
;
1174 if (pwd
->ahi
.channels
* pwd
->frame_len
* sizeof(int16_t) > *data_size
)
1176 /* single frame decode */
1177 ret
= wma_decode_frame(pwd
, samples
);
1180 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1182 PARA_DEBUG_LOG("frame_len: %d, block_len: %d, outbytes: %d, eaten: %d\n",
1183 pwd
->frame_len
, pwd
->block_len
,
1184 (int)((int8_t *)samples
- (int8_t *)data
), pwd
->ahi
.block_align
);
1185 *data_size
= (int8_t *)samples
- (int8_t *)data
;
1186 return pwd
->ahi
.block_align
;
1188 /* reset the bit reservoir on errors */
1189 pwd
->last_superframe_len
= 0;
1193 static ssize_t
wmadec_convert(char *inbuffer
, size_t len
,
1194 struct filter_node
*fn
)
1196 int ret
, converted
= 0;
1197 struct private_wmadec_data
*pwd
= fn
->private_data
;
1199 if (len
<= WMA_FRAME_SKIP
)
1202 ret
= wma_decode_init(inbuffer
, len
, &pwd
);
1205 fn
->private_data
= pwd
;
1206 fn
->fc
->channels
= pwd
->ahi
.channels
;
1207 fn
->fc
->samplerate
= pwd
->ahi
.sample_rate
;
1208 return pwd
->ahi
.header_len
;
1212 if (converted
+ WMA_FRAME_SKIP
+ pwd
->ahi
.block_align
> len
)
1214 out_size
= fn
->bufsize
- fn
->loaded
;
1215 if (out_size
< 128 * 1024)
1217 ret
= wma_decode_superframe(pwd
, fn
->buf
+ fn
->loaded
,
1218 &out_size
, (uint8_t *)inbuffer
+ converted
+ WMA_FRAME_SKIP
,
1219 len
- WMA_FRAME_SKIP
);
1222 fn
->loaded
+= out_size
;
1223 converted
+= ret
+ WMA_FRAME_SKIP
;
1228 static void wmadec_close(struct filter_node
*fn
)
1230 struct private_wmadec_data
*pwd
= fn
->private_data
;
1234 wmadec_cleanup(pwd
);
1237 free(fn
->private_data
);
1238 fn
->private_data
= NULL
;
1241 static void wmadec_open(struct filter_node
*fn
)
1243 fn
->bufsize
= 1024 * 1024;
1244 fn
->buf
= para_malloc(fn
->bufsize
);
1245 fn
->private_data
= NULL
;
1250 * The init function of the wma decoder.
1252 * \param f Its fields are filled in by the function.
1254 void wmadec_filter_init(struct filter
*f
)
1256 f
->open
= wmadec_open
;
1257 f
->close
= wmadec_close
;
1258 f
->convert
= wmadec_convert
;