]> git.tuebingen.mpg.de Git - paraslash.git/blob - wmadec_filter.c
remove src3 parameter from vector_fmul_add().
[paraslash.git] / wmadec_filter.c
1 /*
2  * WMA compatible decoder
3  *
4  * Extracted 2009 from the mplayer source code 2009-02-10.
5  *
6  * Copyright (c) 2002 The FFmpeg Project
7  *
8  * Licensed under the GNU Lesser General Public License.
9  * For licencing details see COPYING.LIB.
10  */
11
12 /** * \file wmadec_filter.c paraslash's WMA decoder.  */
13
14 /*
15  * This decoder handles Microsoft Windows Media Audio data version 2.
16  */
17
18 #define _XOPEN_SOURCE 600
19
20 #include <sys/time.h>
21 #include <inttypes.h>
22 #include <stdio.h>
23 #include <stdlib.h>
24 #include <math.h>
25 #include <string.h>
26 #include <regex.h>
27
28 #include "para.h"
29 #include "error.h"
30 #include "list.h"
31 #include "ggo.h"
32 #include "string.h"
33 #include "sched.h"
34 #include "filter.h"
35 #include "bitstream.h"
36 #include "imdct.h"
37 #include "wma.h"
38 #include "wmadata.h"
39
40
41 /* size of blocks */
42 #define BLOCK_MIN_BITS 7
43 #define BLOCK_MAX_BITS 11
44 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
45
46 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
47
48 /* XXX: find exact max size */
49 #define HIGH_BAND_MAX_SIZE 16
50
51 /* XXX: is it a suitable value ? */
52 #define MAX_CODED_SUPERFRAME_SIZE 16384
53
54 #define MAX_CHANNELS 2
55
56 #define NOISE_TAB_SIZE 8192
57
58 #define LSP_POW_BITS 7
59
60 struct private_wmadec_data {
61         struct asf_header_info ahi;
62         struct getbit_context gb;
63         int use_bit_reservoir;
64         int use_variable_block_len;
65         int use_exp_vlc;        ///< exponent coding: 0 = lsp, 1 = vlc + delta
66         int use_noise_coding;   ///< true if perceptual noise is added
67         int byte_offset_bits;
68         struct vlc exp_vlc;
69         int exponent_sizes[BLOCK_NB_SIZES];
70         uint16_t exponent_bands[BLOCK_NB_SIZES][25];
71         int high_band_start[BLOCK_NB_SIZES];    ///< index of first coef in high band
72         int coefs_start;        ///< first coded coef
73         int coefs_end[BLOCK_NB_SIZES];  ///< max number of coded coefficients
74         int exponent_high_sizes[BLOCK_NB_SIZES];
75         int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
76         struct vlc hgain_vlc;
77
78         /* coded values in high bands */
79         int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
80         int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
81
82         /* there are two possible tables for spectral coefficients */
83         struct vlc coef_vlc[2];
84         uint16_t *run_table[2];
85         uint16_t *level_table[2];
86         uint16_t *int_table[2];
87         const struct coef_vlc_table *coef_vlcs[2];
88         /* frame info */
89         int frame_len;          ///< frame length in samples
90         int frame_len_bits;     ///< frame_len = 1 << frame_len_bits
91         int nb_block_sizes;     ///< number of block sizes
92         /* block info */
93         int reset_block_lengths;
94         int block_len_bits;     ///< log2 of current block length
95         int next_block_len_bits;        ///< log2 of next block length
96         int prev_block_len_bits;        ///< log2 of prev block length
97         int block_len;          ///< block length in samples
98         int block_pos;          ///< current position in frame
99         uint8_t ms_stereo;      ///< true if mid/side stereo mode
100         uint8_t channel_coded[MAX_CHANNELS];    ///< true if channel is coded
101         int exponents_bsize[MAX_CHANNELS];      ///< log2 ratio frame/exp. length
102         float exponents[MAX_CHANNELS][BLOCK_MAX_SIZE];
103         float max_exponent[MAX_CHANNELS];
104         int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
105         float coefs[MAX_CHANNELS][BLOCK_MAX_SIZE];
106         float output[BLOCK_MAX_SIZE * 2];
107         struct mdct_context *mdct_ctx[BLOCK_NB_SIZES];
108         float *windows[BLOCK_NB_SIZES];
109         /* output buffer for one frame and the last for IMDCT windowing */
110         float frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2];
111         /* last frame info */
112         uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
113         int last_bitoffset;
114         int last_superframe_len;
115         float noise_table[NOISE_TAB_SIZE];
116         int noise_index;
117         float noise_mult;       /* XXX: suppress that and integrate it in the noise array */
118         /* lsp_to_curve tables */
119         float lsp_cos_table[BLOCK_MAX_SIZE];
120         float lsp_pow_e_table[256];
121         float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
122         float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
123 };
124
125 #define EXPVLCBITS 8
126 #define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS)
127
128 #define HGAINVLCBITS 9
129 #define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS)
130
131 #define VLCBITS 9
132 #define VLCMAX ((22+VLCBITS-1)/VLCBITS)
133
134 DECLARE_ALIGNED(16, float, ff_sine_128[128]);
135 DECLARE_ALIGNED(16, float, ff_sine_256[256]);
136 DECLARE_ALIGNED(16, float, ff_sine_512[512]);
137 DECLARE_ALIGNED(16, float, ff_sine_1024[1024]);
138 DECLARE_ALIGNED(16, float, ff_sine_2048[2048]);
139 DECLARE_ALIGNED(16, float, ff_sine_4096[4096]);
140
141 static float *ff_sine_windows[6] = {
142         ff_sine_128, ff_sine_256, ff_sine_512, ff_sine_1024,
143         ff_sine_2048, ff_sine_4096
144 };
145
146 /* Generate a sine window. */
147 static void sine_window_init(float *window, int n)
148 {
149         int i;
150
151         for (i = 0; i < n; i++)
152                 window[i] = sinf((i + 0.5) * (M_PI / (2.0 * n)));
153 }
154
155 static int wmadec_cleanup(struct private_wmadec_data *s)
156 {
157         int i;
158
159         for (i = 0; i < s->nb_block_sizes; i++)
160                 imdct_end(s->mdct_ctx[i]);
161
162         if (s->use_exp_vlc)
163                 free_vlc(&s->exp_vlc);
164         if (s->use_noise_coding)
165                 free_vlc(&s->hgain_vlc);
166         for (i = 0; i < 2; i++) {
167                 free_vlc(&s->coef_vlc[i]);
168                 free(s->run_table[i]);
169                 free(s->level_table[i]);
170                 free(s->int_table[i]);
171         }
172         return 0;
173 }
174
175 /* XXX: use same run/length optimization as mpeg decoders */
176 //FIXME maybe split decode / encode or pass flag
177 static void init_coef_vlc(struct vlc *vlc, uint16_t **prun_table,
178                 uint16_t **plevel_table, uint16_t **pint_table,
179                 const struct coef_vlc_table *vlc_table)
180 {
181         int n = vlc_table->n;
182         const uint8_t *table_bits = vlc_table->huffbits;
183         const uint32_t *table_codes = vlc_table->huffcodes;
184         const uint16_t *levels_table = vlc_table->levels;
185         uint16_t *run_table, *level_table, *int_table;
186         int i, l, j, k, level;
187
188         init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4);
189
190         run_table = para_malloc(n * sizeof(uint16_t));
191         level_table = para_malloc(n * sizeof(uint16_t));
192         int_table = para_malloc(n * sizeof(uint16_t));
193         i = 2;
194         level = 1;
195         k = 0;
196         while (i < n) {
197                 int_table[k] = i;
198                 l = levels_table[k++];
199                 for (j = 0; j < l; j++) {
200                         run_table[i] = j;
201                         level_table[i] = level;
202                         i++;
203                 }
204                 level++;
205         }
206         *prun_table = run_table;
207         *plevel_table = level_table;
208         *pint_table = int_table;
209 }
210
211 /* compute the scale factor band sizes for each MDCT block size */
212 static void compute_scale_factor_band_sizes(struct private_wmadec_data *s,
213         float high_freq)
214 {
215         struct asf_header_info *ahi = &s->ahi;
216         int a, b, pos, lpos, k, block_len, i, j, n;
217         const uint8_t *table;
218
219         s->coefs_start = 0;
220         for (k = 0; k < s->nb_block_sizes; k++) {
221                 block_len = s->frame_len >> k;
222
223                 table = NULL;
224                 a = s->frame_len_bits - BLOCK_MIN_BITS - k;
225                 if (a < 3) {
226                         if (ahi->sample_rate >= 44100)
227                                 table = exponent_band_44100[a];
228                         else if (ahi->sample_rate >= 32000)
229                                 table = exponent_band_32000[a];
230                         else if (ahi->sample_rate >= 22050)
231                                 table = exponent_band_22050[a];
232                 }
233                 if (table) {
234                         n = *table++;
235                         for (i = 0; i < n; i++)
236                                 s->exponent_bands[k][i] = table[i];
237                         s->exponent_sizes[k] = n;
238                 } else {
239                         j = 0;
240                         lpos = 0;
241                         for (i = 0; i < 25; i++) {
242                                 a = wma_critical_freqs[i];
243                                 b = ahi->sample_rate;
244                                 pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
245                                 pos <<= 2;
246                                 if (pos > block_len)
247                                         pos = block_len;
248                                 if (pos > lpos)
249                                         s->exponent_bands[k][j++] = pos - lpos;
250                                 if (pos >= block_len)
251                                         break;
252                                 lpos = pos;
253                         }
254                         s->exponent_sizes[k] = j;
255                 }
256
257                 /* max number of coefs */
258                 s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
259                 /* high freq computation */
260                 s->high_band_start[k] = (int) ((block_len * 2 * high_freq)
261                         / ahi->sample_rate + 0.5);
262                 n = s->exponent_sizes[k];
263                 j = 0;
264                 pos = 0;
265                 for (i = 0; i < n; i++) {
266                         int start, end;
267                         start = pos;
268                         pos += s->exponent_bands[k][i];
269                         end = pos;
270                         if (start < s->high_band_start[k])
271                                 start = s->high_band_start[k];
272                         if (end > s->coefs_end[k])
273                                 end = s->coefs_end[k];
274                         if (end > start)
275                                 s->exponent_high_bands[k][j++] = end - start;
276                 }
277                 s->exponent_high_sizes[k] = j;
278         }
279 }
280
281 static int wma_init(struct private_wmadec_data *s, int flags2, struct asf_header_info *ahi)
282 {
283         int i;
284         float bps1, high_freq;
285         volatile float bps;
286         int sample_rate1;
287         int coef_vlc_table;
288
289         if (ahi->sample_rate <= 0 || ahi->sample_rate > 50000
290                 || ahi->channels <= 0 || ahi->channels > 8
291                 || ahi->bit_rate <= 0)
292                 return -E_WMA_BAD_PARAMS;
293
294         /* compute MDCT block size */
295         if (ahi->sample_rate <= 16000) {
296                 s->frame_len_bits = 9;
297         } else if (ahi->sample_rate <= 22050) {
298                 s->frame_len_bits = 10;
299         } else {
300                 s->frame_len_bits = 11;
301         }
302         s->frame_len = 1 << s->frame_len_bits;
303         if (s->use_variable_block_len) {
304                 int nb_max, nb;
305                 nb = ((flags2 >> 3) & 3) + 1;
306                 if ((ahi->bit_rate / ahi->channels) >= 32000)
307                         nb += 2;
308                 nb_max = s->frame_len_bits - BLOCK_MIN_BITS;
309                 if (nb > nb_max)
310                         nb = nb_max;
311                 s->nb_block_sizes = nb + 1;
312         } else {
313                 s->nb_block_sizes = 1;
314         }
315
316         /* init rate dependent parameters */
317         s->use_noise_coding = 1;
318         high_freq = ahi->sample_rate * 0.5;
319
320         /* wma2 rates are normalized */
321         sample_rate1 = ahi->sample_rate;
322         if (sample_rate1 >= 44100)
323                 sample_rate1 = 44100;
324         else if (sample_rate1 >= 22050)
325                 sample_rate1 = 22050;
326         else if (sample_rate1 >= 16000)
327                 sample_rate1 = 16000;
328         else if (sample_rate1 >= 11025)
329                 sample_rate1 = 11025;
330         else if (sample_rate1 >= 8000)
331                 sample_rate1 = 8000;
332
333         bps = (float) ahi->bit_rate / (float) (ahi->channels * ahi->sample_rate);
334         s->byte_offset_bits = wma_log2((int) (bps * s->frame_len / 8.0 + 0.5)) + 2;
335         /*
336          * Compute high frequency value and choose if noise coding should be
337          * activated.
338          */
339         bps1 = bps;
340         if (ahi->channels == 2)
341                 bps1 = bps * 1.6;
342         if (sample_rate1 == 44100) {
343                 if (bps1 >= 0.61)
344                         s->use_noise_coding = 0;
345                 else
346                         high_freq = high_freq * 0.4;
347         } else if (sample_rate1 == 22050) {
348                 if (bps1 >= 1.16)
349                         s->use_noise_coding = 0;
350                 else if (bps1 >= 0.72)
351                         high_freq = high_freq * 0.7;
352                 else
353                         high_freq = high_freq * 0.6;
354         } else if (sample_rate1 == 16000) {
355                 if (bps > 0.5)
356                         high_freq = high_freq * 0.5;
357                 else
358                         high_freq = high_freq * 0.3;
359         } else if (sample_rate1 == 11025) {
360                 high_freq = high_freq * 0.7;
361         } else if (sample_rate1 == 8000) {
362                 if (bps <= 0.625) {
363                         high_freq = high_freq * 0.5;
364                 } else if (bps > 0.75) {
365                         s->use_noise_coding = 0;
366                 } else {
367                         high_freq = high_freq * 0.65;
368                 }
369         } else {
370                 if (bps >= 0.8) {
371                         high_freq = high_freq * 0.75;
372                 } else if (bps >= 0.6) {
373                         high_freq = high_freq * 0.6;
374                 } else {
375                         high_freq = high_freq * 0.5;
376                 }
377         }
378         PARA_INFO_LOG("channels=%d sample_rate=%d "
379                 "bitrate=%d block_align=%d\n",
380                 ahi->channels, ahi->sample_rate,
381                 ahi->bit_rate, ahi->block_align);
382         PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
383                 "high_freq=%f bitoffset=%d\n",
384                 s->frame_len, bps, bps1,
385                 high_freq, s->byte_offset_bits);
386         PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
387                 s->use_noise_coding, s->use_exp_vlc, s->nb_block_sizes);
388
389         compute_scale_factor_band_sizes(s, high_freq);
390         /* init MDCT windows : simple sinus window */
391         for (i = 0; i < s->nb_block_sizes; i++) {
392                 int n;
393                 n = 1 << (s->frame_len_bits - i);
394                 sine_window_init(ff_sine_windows[s->frame_len_bits - i - 7], n);
395                 s->windows[i] = ff_sine_windows[s->frame_len_bits - i - 7];
396         }
397
398         s->reset_block_lengths = 1;
399
400         if (s->use_noise_coding) {
401                 /* init the noise generator */
402                 if (s->use_exp_vlc)
403                         s->noise_mult = 0.02;
404                 else
405                         s->noise_mult = 0.04;
406
407                 {
408                         unsigned int seed;
409                         float norm;
410                         seed = 1;
411                         norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * s->noise_mult;
412                         for (i = 0; i < NOISE_TAB_SIZE; i++) {
413                                 seed = seed * 314159 + 1;
414                                 s->noise_table[i] = (float) ((int) seed) * norm;
415                         }
416                 }
417         }
418
419         /* choose the VLC tables for the coefficients */
420         coef_vlc_table = 2;
421         if (ahi->sample_rate >= 32000) {
422                 if (bps1 < 0.72)
423                         coef_vlc_table = 0;
424                 else if (bps1 < 1.16)
425                         coef_vlc_table = 1;
426         }
427         s->coef_vlcs[0] = &coef_vlcs[coef_vlc_table * 2];
428         s->coef_vlcs[1] = &coef_vlcs[coef_vlc_table * 2 + 1];
429         init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0],
430                 &s->int_table[0], s->coef_vlcs[0]);
431         init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1],
432                 &s->int_table[1], s->coef_vlcs[1]);
433         return 0;
434 }
435
436 static void wma_lsp_to_curve_init(struct private_wmadec_data *s, int frame_len)
437 {
438         float wdel, a, b;
439         int i, e, m;
440
441         wdel = M_PI / frame_len;
442         for (i = 0; i < frame_len; i++)
443                 s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
444
445         /* tables for x^-0.25 computation */
446         for (i = 0; i < 256; i++) {
447                 e = i - 126;
448                 s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
449         }
450
451         /* These two tables are needed to avoid two operations in pow_m1_4. */
452         b = 1.0;
453         for (i = (1 << LSP_POW_BITS) - 1; i >= 0; i--) {
454                 m = (1 << LSP_POW_BITS) + i;
455                 a = (float) m *(0.5 / (1 << LSP_POW_BITS));
456                 a = pow(a, -0.25);
457                 s->lsp_pow_m_table1[i] = 2 * a - b;
458                 s->lsp_pow_m_table2[i] = b - a;
459                 b = a;
460         }
461 }
462
463 static int wma_decode_init(char *initial_buf, int len, struct private_wmadec_data **result)
464 {
465         struct private_wmadec_data *s;
466         int ret, i;
467
468         PARA_NOTICE_LOG("initial buf: %d bytes\n", len);
469         s = para_calloc(sizeof(*s));
470         ret = read_asf_header(initial_buf, len, &s->ahi);
471         if (ret <= 0) {
472                 free(s);
473                 return ret;
474         }
475
476         s->use_exp_vlc = s->ahi.flags2 & 0x0001;
477         s->use_bit_reservoir = s->ahi.flags2 & 0x0002;
478         s->use_variable_block_len = s->ahi.flags2 & 0x0004;
479
480         ret = wma_init(s, s->ahi.flags2, &s->ahi);
481         if (ret < 0)
482                 return ret;
483         /* init MDCT */
484         for (i = 0; i < s->nb_block_sizes; i++) {
485                 ret = imdct_init(s->frame_len_bits - i + 1, &s->mdct_ctx[i]);
486                 if (ret < 0)
487                         return ret;
488         }
489         if (s->use_noise_coding) {
490                 PARA_INFO_LOG("using noise coding\n");
491                 init_vlc(&s->hgain_vlc, HGAINVLCBITS,
492                         sizeof(ff_wma_hgain_huffbits), ff_wma_hgain_huffbits,
493                         1, 1, ff_wma_hgain_huffcodes, 2, 2);
494         }
495
496         if (s->use_exp_vlc) {
497                 PARA_INFO_LOG("using exp_vlc\n");
498                 init_vlc(&s->exp_vlc, EXPVLCBITS,
499                 sizeof(ff_wma_scale_huffbits), ff_wma_scale_huffbits,
500                 1, 1, ff_wma_scale_huffcodes, 4, 4);
501         } else {
502                 PARA_INFO_LOG("using curve\n");
503                 wma_lsp_to_curve_init(s, s->frame_len);
504         }
505         *result = s;
506         return s->ahi.header_len;
507 }
508
509 /**
510  * compute x^-0.25 with an exponent and mantissa table. We use linear
511  * interpolation to reduce the mantissa table size at a small speed
512  * expense (linear interpolation approximately doubles the number of
513  * bits of precision).
514  */
515 static inline float pow_m1_4(struct private_wmadec_data *s, float x)
516 {
517         union {
518                 float f;
519                 unsigned int v;
520         } u, t;
521         unsigned int e, m;
522         float a, b;
523
524         u.f = x;
525         e = u.v >> 23;
526         m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
527         /* build interpolation scale: 1 <= t < 2. */
528         t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
529         a = s->lsp_pow_m_table1[m];
530         b = s->lsp_pow_m_table2[m];
531         return s->lsp_pow_e_table[e] * (a + b * t.f);
532 }
533
534 static void wma_lsp_to_curve(struct private_wmadec_data *s,
535                 float *out, float *val_max_ptr, int n, float *lsp)
536 {
537         int i, j;
538         float p, q, w, v, val_max;
539
540         val_max = 0;
541         for (i = 0; i < n; i++) {
542                 p = 0.5f;
543                 q = 0.5f;
544                 w = s->lsp_cos_table[i];
545                 for (j = 1; j < NB_LSP_COEFS; j += 2) {
546                         q *= w - lsp[j - 1];
547                         p *= w - lsp[j];
548                 }
549                 p *= p * (2.0f - w);
550                 q *= q * (2.0f + w);
551                 v = p + q;
552                 v = pow_m1_4(s, v);
553                 if (v > val_max)
554                         val_max = v;
555                 out[i] = v;
556         }
557         *val_max_ptr = val_max;
558 }
559
560 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
561 static void decode_exp_lsp(struct private_wmadec_data *s, int ch)
562 {
563         float lsp_coefs[NB_LSP_COEFS];
564         int val, i;
565
566         for (i = 0; i < NB_LSP_COEFS; i++) {
567                 if (i == 0 || i >= 8)
568                         val = get_bits(&s->gb, 3);
569                 else
570                         val = get_bits(&s->gb, 4);
571                 lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
572         }
573
574         wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
575                          s->block_len, lsp_coefs);
576 }
577
578 /*
579  * Parse a vlc code, faster then get_vlc().
580  *
581  * \param bits The number of bits which will be read at once, must be
582  * identical to nb_bits in init_vlc()
583  *
584  * \param max_depth The number of times bits bits must be read to completely
585  * read the longest vlc code = (max_vlc_length + bits - 1) / bits.
586  */
587 static int get_vlc2(struct getbit_context *s, VLC_TYPE(*table)[2],
588                 int bits, int max_depth)
589 {
590         int code;
591
592         OPEN_READER(re, s)
593         UPDATE_CACHE(re, s)
594         GET_VLC(code, re, s, table, bits, max_depth)
595         CLOSE_READER(re, s)
596         return code;
597 }
598
599 /* Decode exponents coded with VLC codes. */
600 static int decode_exp_vlc(struct private_wmadec_data *s, int ch)
601 {
602         int last_exp, n, code;
603         const uint16_t *ptr, *band_ptr;
604         float v, *q, max_scale, *q_end;
605
606         band_ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
607         ptr = band_ptr;
608         q = s->exponents[ch];
609         q_end = q + s->block_len;
610         max_scale = 0;
611         last_exp = 36;
612
613         while (q < q_end) {
614                 code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
615                 if (code < 0)
616                         return -1;
617                 /* NOTE: this offset is the same as MPEG4 AAC ! */
618                 last_exp += code - 60;
619                 /* XXX: use a table */
620                 v = pow(10, last_exp * (1.0 / 16.0));
621                 if (v > max_scale)
622                         max_scale = v;
623                 n = *ptr++;
624                 do {
625                         *q++ = v;
626                 } while (--n);
627         }
628         s->max_exponent[ch] = max_scale;
629         return 0;
630 }
631
632 static void vector_fmul_add(float *dst, const float *src0, const float *src1,
633                 const float *src2, int len)
634 {
635         int i;
636         for (i = 0; i < len; i++)
637                 dst[i] = src0[i] * src1[i] + src2[i];
638 }
639
640 static void vector_fmul_reverse_c(float *dst, const float *src0,
641                 const float *src1, int len)
642 {
643         int i;
644         src1 += len - 1;
645         for (i = 0; i < len; i++)
646                 dst[i] = src0[i] * src1[-i];
647 }
648
649 /**
650  * Apply MDCT window and add into output.
651  *
652  * We ensure that when the windows overlap their squared sum
653  * is always 1 (MDCT reconstruction rule).
654  */
655 static void wma_window(struct private_wmadec_data *s, float *out)
656 {
657         float *in = s->output;
658         int block_len, bsize, n;
659
660         /* left part */
661         if (s->block_len_bits <= s->prev_block_len_bits) {
662                 block_len = s->block_len;
663                 bsize = s->frame_len_bits - s->block_len_bits;
664
665                 vector_fmul_add(out, in, s->windows[bsize], out, block_len);
666
667         } else {
668                 block_len = 1 << s->prev_block_len_bits;
669                 n = (s->block_len - block_len) / 2;
670                 bsize = s->frame_len_bits - s->prev_block_len_bits;
671
672                 vector_fmul_add(out + n, in + n, s->windows[bsize], out + n,
673                         block_len);
674
675                 memcpy(out + n + block_len, in + n + block_len,
676                        n * sizeof(float));
677         }
678
679         out += s->block_len;
680         in += s->block_len;
681
682         /* right part */
683         if (s->block_len_bits <= s->next_block_len_bits) {
684                 block_len = s->block_len;
685                 bsize = s->frame_len_bits - s->block_len_bits;
686
687                 vector_fmul_reverse_c(out, in, s->windows[bsize], block_len);
688
689         } else {
690                 block_len = 1 << s->next_block_len_bits;
691                 n = (s->block_len - block_len) / 2;
692                 bsize = s->frame_len_bits - s->next_block_len_bits;
693
694                 memcpy(out, in, n * sizeof(float));
695
696                 vector_fmul_reverse_c(out + n, in + n, s->windows[bsize],
697                                       block_len);
698
699                 memset(out + n + block_len, 0, n * sizeof(float));
700         }
701 }
702
703 static int wma_total_gain_to_bits(int total_gain)
704 {
705         if (total_gain < 15)
706                 return 13;
707         else if (total_gain < 32)
708                 return 12;
709         else if (total_gain < 40)
710                 return 11;
711         else if (total_gain < 45)
712                 return 10;
713         else
714                 return 9;
715 }
716
717 /**
718  * @return 0 if OK. 1 if last block of frame. return -1 if
719  * unrecorrable error.
720  */
721 static int wma_decode_block(struct private_wmadec_data *s)
722 {
723         int n, v, ch, code, bsize;
724         int coef_nb_bits, total_gain;
725         int nb_coefs[MAX_CHANNELS];
726         float mdct_norm;
727
728         /* compute current block length */
729         if (s->use_variable_block_len) {
730                 n = wma_log2(s->nb_block_sizes - 1) + 1;
731
732                 if (s->reset_block_lengths) {
733                         s->reset_block_lengths = 0;
734                         v = get_bits(&s->gb, n);
735                         if (v >= s->nb_block_sizes)
736                                 return -1;
737                         s->prev_block_len_bits = s->frame_len_bits - v;
738                         v = get_bits(&s->gb, n);
739                         if (v >= s->nb_block_sizes)
740                                 return -1;
741                         s->block_len_bits = s->frame_len_bits - v;
742                 } else {
743                         /* update block lengths */
744                         s->prev_block_len_bits = s->block_len_bits;
745                         s->block_len_bits = s->next_block_len_bits;
746                 }
747                 v = get_bits(&s->gb, n);
748                 if (v >= s->nb_block_sizes)
749                         return -1;
750                 s->next_block_len_bits = s->frame_len_bits - v;
751         } else {
752                 /* fixed block len */
753                 s->next_block_len_bits = s->frame_len_bits;
754                 s->prev_block_len_bits = s->frame_len_bits;
755                 s->block_len_bits = s->frame_len_bits;
756         }
757
758         /* now check if the block length is coherent with the frame length */
759         s->block_len = 1 << s->block_len_bits;
760         if ((s->block_pos + s->block_len) > s->frame_len)
761                 return -E_INCOHERENT_BLOCK_LEN;
762
763         if (s->ahi.channels == 2) {
764                 s->ms_stereo = get_bits1(&s->gb);
765         }
766         v = 0;
767         for (ch = 0; ch < s->ahi.channels; ch++) {
768                 int a = get_bits1(&s->gb);
769                 s->channel_coded[ch] = a;
770                 v |= a;
771         }
772
773         bsize = s->frame_len_bits - s->block_len_bits;
774
775         /* if no channel coded, no need to go further */
776         /* XXX: fix potential framing problems */
777         if (!v)
778                 goto next;
779
780         /* read total gain and extract corresponding number of bits for
781            coef escape coding */
782         total_gain = 1;
783         for (;;) {
784                 int a = get_bits(&s->gb, 7);
785                 total_gain += a;
786                 if (a != 127)
787                         break;
788         }
789
790         coef_nb_bits = wma_total_gain_to_bits(total_gain);
791
792         /* compute number of coefficients */
793         n = s->coefs_end[bsize] - s->coefs_start;
794         for (ch = 0; ch < s->ahi.channels; ch++)
795                 nb_coefs[ch] = n;
796
797         /* complex coding */
798         if (s->use_noise_coding) {
799                 for (ch = 0; ch < s->ahi.channels; ch++) {
800                         if (s->channel_coded[ch]) {
801                                 int i, m, a;
802                                 m = s->exponent_high_sizes[bsize];
803                                 for (i = 0; i < m; i++) {
804                                         a = get_bits1(&s->gb);
805                                         s->high_band_coded[ch][i] = a;
806                                         /* if noise coding, the coefficients are not transmitted */
807                                         if (a)
808                                                 nb_coefs[ch] -=
809                                                     s->
810                                                     exponent_high_bands[bsize]
811                                                     [i];
812                                 }
813                         }
814                 }
815                 for (ch = 0; ch < s->ahi.channels; ch++) {
816                         if (s->channel_coded[ch]) {
817                                 int i, val;
818
819                                 n = s->exponent_high_sizes[bsize];
820                                 val = (int) 0x80000000;
821                                 for (i = 0; i < n; i++) {
822                                         if (s->high_band_coded[ch][i]) {
823                                                 if (val == (int) 0x80000000) {
824                                                         val =
825                                                             get_bits(&s->gb,
826                                                                      7) - 19;
827                                                 } else {
828                                                         code =
829                                                             get_vlc2(&s->gb,
830                                                                      s->
831                                                                      hgain_vlc.
832                                                                      table,
833                                                                      HGAINVLCBITS,
834                                                                      HGAINMAX);
835                                                         if (code < 0)
836                                                                 return -1;
837                                                         val += code - 18;
838                                                 }
839                                                 s->high_band_values[ch][i] =
840                                                     val;
841                                         }
842                                 }
843                         }
844                 }
845         }
846
847         /* exponents can be reused in short blocks. */
848         if ((s->block_len_bits == s->frame_len_bits) || get_bits1(&s->gb)) {
849                 for (ch = 0; ch < s->ahi.channels; ch++) {
850                         if (s->channel_coded[ch]) {
851                                 if (s->use_exp_vlc) {
852                                         if (decode_exp_vlc(s, ch) < 0)
853                                                 return -1;
854                                 } else {
855                                         decode_exp_lsp(s, ch);
856                                 }
857                                 s->exponents_bsize[ch] = bsize;
858                         }
859                 }
860         }
861
862         /* parse spectral coefficients : just RLE encoding */
863         for (ch = 0; ch < s->ahi.channels; ch++) {
864                 if (s->channel_coded[ch]) {
865                         struct vlc *coef_vlc;
866                         int level, run, sign, tindex;
867                         int16_t *ptr, *eptr;
868                         const uint16_t *level_table, *run_table;
869
870                         /* special VLC tables are used for ms stereo because
871                            there is potentially less energy there */
872                         tindex = (ch == 1 && s->ms_stereo);
873                         coef_vlc = &s->coef_vlc[tindex];
874                         run_table = s->run_table[tindex];
875                         level_table = s->level_table[tindex];
876                         /* XXX: optimize */
877                         ptr = &s->coefs1[ch][0];
878                         eptr = ptr + nb_coefs[ch];
879                         memset(ptr, 0, s->block_len * sizeof(int16_t));
880                         for (;;) {
881                                 code =
882                                     get_vlc2(&s->gb, coef_vlc->table, VLCBITS,
883                                              VLCMAX);
884                                 if (code < 0)
885                                         return -1;
886                                 if (code == 1) {
887                                         /* EOB */
888                                         break;
889                                 } else if (code == 0) {
890                                         /* escape */
891                                         level = get_bits(&s->gb, coef_nb_bits);
892                                         /* NOTE: this is rather suboptimal. reading
893                                            block_len_bits would be better */
894                                         run =
895                                             get_bits(&s->gb, s->frame_len_bits);
896                                 } else {
897                                         /* normal code */
898                                         run = run_table[code];
899                                         level = level_table[code];
900                                 }
901                                 sign = get_bits1(&s->gb);
902                                 if (!sign)
903                                         level = -level;
904                                 ptr += run;
905                                 if (ptr >= eptr) {
906                                         PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
907                                         break;
908                                 }
909                                 *ptr++ = level;
910                                 /* NOTE: EOB can be omitted */
911                                 if (ptr >= eptr)
912                                         break;
913                         }
914                 }
915         }
916
917         /* normalize */
918         {
919                 int n4 = s->block_len / 2;
920                 mdct_norm = 1.0 / (float) n4;
921         }
922
923         /* finally compute the MDCT coefficients */
924         for (ch = 0; ch < s->ahi.channels; ch++) {
925                 if (s->channel_coded[ch]) {
926                         int16_t *coefs1;
927                         float *coefs, *exponents, mult, mult1, noise;
928                         int i, j, n1, last_high_band, esize;
929                         float exp_power[HIGH_BAND_MAX_SIZE];
930
931                         coefs1 = s->coefs1[ch];
932                         exponents = s->exponents[ch];
933                         esize = s->exponents_bsize[ch];
934                         mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
935                         mult *= mdct_norm;
936                         coefs = s->coefs[ch];
937                         if (s->use_noise_coding) {
938                                 mult1 = mult;
939                                 /* very low freqs : noise */
940                                 for (i = 0; i < s->coefs_start; i++) {
941                                         *coefs++ =
942                                             s->noise_table[s->noise_index] *
943                                             exponents[i << bsize >> esize] *
944                                             mult1;
945                                         s->noise_index =
946                                             (s->noise_index +
947                                              1) & (NOISE_TAB_SIZE - 1);
948                                 }
949
950                                 n1 = s->exponent_high_sizes[bsize];
951
952                                 /* compute power of high bands */
953                                 exponents = s->exponents[ch] +
954                                     (s->high_band_start[bsize] << bsize);
955                                 last_high_band = 0;     /* avoid warning */
956                                 for (j = 0; j < n1; j++) {
957                                         n = s->exponent_high_bands[s->
958                                                                    frame_len_bits
959                                                                    -
960                                                                    s->
961                                                                    block_len_bits]
962                                             [j];
963                                         if (s->high_band_coded[ch][j]) {
964                                                 float e2, val;
965                                                 e2 = 0;
966                                                 for (i = 0; i < n; i++) {
967                                                         val = exponents[i << bsize
968                                                                       >> esize];
969                                                         e2 += val * val;
970                                                 }
971                                                 exp_power[j] = e2 / n;
972                                                 last_high_band = j;
973                                         }
974                                         exponents += n << bsize;
975                                 }
976
977                                 /* main freqs and high freqs */
978                                 exponents =
979                                     s->exponents[ch] +
980                                     (s->coefs_start << bsize);
981                                 for (j = -1; j < n1; j++) {
982                                         if (j < 0) {
983                                                 n = s->high_band_start[bsize] -
984                                                     s->coefs_start;
985                                         } else {
986                                                 n = s->exponent_high_bands[s->
987                                                                            frame_len_bits
988                                                                            -
989                                                                            s->
990                                                                            block_len_bits]
991                                                     [j];
992                                         }
993                                         if (j >= 0 && s->high_band_coded[ch][j]) {
994                                                 /* use noise with specified power */
995                                                 mult1 =
996                                                     sqrt(exp_power[j] /
997                                                          exp_power
998                                                          [last_high_band]);
999                                                 /* XXX: use a table */
1000                                                 mult1 =
1001                                                     mult1 * pow(10,
1002                                                                 s->
1003                                                                 high_band_values
1004                                                                 [ch][j] * 0.05);
1005                                                 mult1 =
1006                                                     mult1 /
1007                                                     (s->max_exponent[ch] *
1008                                                      s->noise_mult);
1009                                                 mult1 *= mdct_norm;
1010                                                 for (i = 0; i < n; i++) {
1011                                                         noise =
1012                                                             s->noise_table[s->
1013                                                                            noise_index];
1014                                                         s->noise_index =
1015                                                             (s->noise_index +
1016                                                              1) &
1017                                                             (NOISE_TAB_SIZE -
1018                                                              1);
1019                                                         *coefs++ =
1020                                                             noise *
1021                                                             exponents[i << bsize
1022                                                                       >> esize]
1023                                                             * mult1;
1024                                                 }
1025                                                 exponents += n << bsize;
1026                                         } else {
1027                                                 /* coded values + small noise */
1028                                                 for (i = 0; i < n; i++) {
1029                                                         noise =
1030                                                             s->noise_table[s->
1031                                                                            noise_index];
1032                                                         s->noise_index =
1033                                                             (s->noise_index +
1034                                                              1) &
1035                                                             (NOISE_TAB_SIZE -
1036                                                              1);
1037                                                         *coefs++ =
1038                                                             ((*coefs1++) +
1039                                                              noise) *
1040                                                             exponents[i << bsize
1041                                                                       >> esize]
1042                                                             * mult;
1043                                                 }
1044                                                 exponents += n << bsize;
1045                                         }
1046                                 }
1047
1048                                 /* very high freqs : noise */
1049                                 n = s->block_len - s->coefs_end[bsize];
1050                                 mult1 =
1051                                     mult * exponents[((-1 << bsize)) >> esize];
1052                                 for (i = 0; i < n; i++) {
1053                                         *coefs++ =
1054                                             s->noise_table[s->noise_index] *
1055                                             mult1;
1056                                         s->noise_index =
1057                                             (s->noise_index +
1058                                              1) & (NOISE_TAB_SIZE - 1);
1059                                 }
1060                         } else {
1061                                 /* XXX: optimize more */
1062                                 for (i = 0; i < s->coefs_start; i++)
1063                                         *coefs++ = 0.0;
1064                                 n = nb_coefs[ch];
1065                                 for (i = 0; i < n; i++) {
1066                                         *coefs++ =
1067                                             coefs1[i] *
1068                                             exponents[i << bsize >> esize] *
1069                                             mult;
1070                                 }
1071                                 n = s->block_len - s->coefs_end[bsize];
1072                                 for (i = 0; i < n; i++)
1073                                         *coefs++ = 0.0;
1074                         }
1075                 }
1076         }
1077
1078         if (s->ms_stereo && s->channel_coded[1]) {
1079                 float a, b;
1080                 int i;
1081
1082                 /*
1083                  * Nominal case for ms stereo: we do it before mdct.
1084                  *
1085                  * No need to optimize this case because it should almost never
1086                  * happen.
1087                  */
1088                 if (!s->channel_coded[0]) {
1089                         PARA_NOTICE_LOG("rare ms-stereo\n");
1090                         memset(s->coefs[0], 0, sizeof(float) * s->block_len);
1091                         s->channel_coded[0] = 1;
1092                 }
1093                 for (i = 0; i < s->block_len; i++) {
1094                         a = s->coefs[0][i];
1095                         b = s->coefs[1][i];
1096                         s->coefs[0][i] = a + b;
1097                         s->coefs[1][i] = a - b;
1098                 }
1099         }
1100
1101 next:
1102         for (ch = 0; ch < s->ahi.channels; ch++) {
1103                 int n4, index;
1104
1105                 n = s->block_len;
1106                 n4 = s->block_len / 2;
1107                 if (s->channel_coded[ch])
1108                         imdct(s->mdct_ctx[bsize], s->output, s->coefs[ch]);
1109                 else if (!(s->ms_stereo && ch == 1))
1110                         memset(s->output, 0, sizeof(s->output));
1111
1112                 /* multiply by the window and add in the frame */
1113                 index = (s->frame_len / 2) + s->block_pos - n4;
1114                 wma_window(s, &s->frame_out[ch][index]);
1115         }
1116
1117         /* update block number */
1118         s->block_pos += s->block_len;
1119         if (s->block_pos >= s->frame_len)
1120                 return 1;
1121         else
1122                 return 0;
1123 }
1124
1125 /*
1126  * Clip a signed integer value into the -32768,32767 range.
1127  *
1128  * \param a The value to clip.
1129  *
1130  * \return The clipped value.
1131  */
1132 static inline int16_t av_clip_int16(int a)
1133 {
1134         if ((a + 32768) & ~65535)
1135                 return (a >> 31) ^ 32767;
1136         else
1137                 return a;
1138 }
1139
1140 /* Decode a frame of frame_len samples. */
1141 static int wma_decode_frame(struct private_wmadec_data *s, int16_t * samples)
1142 {
1143         int ret, i, n, ch, incr;
1144         int16_t *ptr;
1145         float *iptr;
1146
1147         /* read each block */
1148         s->block_pos = 0;
1149         for (;;) {
1150                 ret = wma_decode_block(s);
1151                 if (ret < 0)
1152                         return -1;
1153                 if (ret)
1154                         break;
1155         }
1156
1157         /* convert frame to integer */
1158         n = s->frame_len;
1159         incr = s->ahi.channels;
1160         for (ch = 0; ch < s->ahi.channels; ch++) {
1161                 ptr = samples + ch;
1162                 iptr = s->frame_out[ch];
1163
1164                 for (i = 0; i < n; i++) {
1165                         *ptr = av_clip_int16(lrintf(*iptr++));
1166                         ptr += incr;
1167                 }
1168                 /* prepare for next block */
1169                 memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
1170                         s->frame_len * sizeof(float));
1171         }
1172         return 0;
1173 }
1174
1175 static int wma_decode_superframe(struct private_wmadec_data *s, void *data,
1176                 int *data_size, const uint8_t *buf, int buf_size)
1177 {
1178         int ret, nb_frames, bit_offset, i, pos, len;
1179         uint8_t *q;
1180         int16_t *samples;
1181         static int frame_count;
1182
1183         if (buf_size == 0) {
1184                 s->last_superframe_len = 0;
1185                 return 0;
1186         }
1187         if (buf_size < s->ahi.block_align)
1188                 return 0;
1189         buf_size = s->ahi.block_align;
1190         samples = data;
1191         init_get_bits(&s->gb, buf, buf_size * 8);
1192         if (s->use_bit_reservoir) {
1193                 /* read super frame header */
1194                 skip_bits(&s->gb, 4);   /* super frame index */
1195                 nb_frames = get_bits(&s->gb, 4) - 1;
1196                 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1197                 ret = -E_WMA_OUTPUT_SPACE;
1198                 if ((nb_frames + 1) * s->ahi.channels * s->frame_len
1199                                 * sizeof(int16_t) > *data_size)
1200                         goto fail;
1201
1202                 bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
1203
1204                 if (s->last_superframe_len > 0) {
1205                         /* add bit_offset bits to last frame */
1206                         ret = -E_WMA_BAD_SUPERFRAME;
1207                         if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
1208                                         MAX_CODED_SUPERFRAME_SIZE)
1209                                 goto fail;
1210                         q = s->last_superframe + s->last_superframe_len;
1211                         len = bit_offset;
1212                         while (len > 7) {
1213                                 *q++ = get_bits(&s->gb, 8);
1214                                 len -= 8;
1215                         }
1216                         if (len > 0) {
1217                                 *q++ = get_bits(&s->gb, len) << (8 - len);
1218                         }
1219
1220                         /* XXX: bit_offset bits into last frame */
1221                         init_get_bits(&s->gb, s->last_superframe,
1222                                 MAX_CODED_SUPERFRAME_SIZE * 8);
1223                         /* skip unused bits */
1224                         if (s->last_bitoffset > 0)
1225                                 skip_bits(&s->gb, s->last_bitoffset);
1226                         /*
1227                          * This frame is stored in the last superframe and in
1228                          * the current one.
1229                          */
1230                         ret = -E_WMA_DECODE;
1231                         if (wma_decode_frame(s, samples) < 0)
1232                                 goto fail;
1233                         frame_count++;
1234                         samples += s->ahi.channels * s->frame_len;
1235                 }
1236
1237                 /* read each frame starting from bit_offset */
1238                 pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
1239                 init_get_bits(&s->gb, buf + (pos >> 3),
1240                         (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3)) * 8);
1241                 len = pos & 7;
1242                 if (len > 0)
1243                         skip_bits(&s->gb, len);
1244
1245                 s->reset_block_lengths = 1;
1246                 for (i = 0; i < nb_frames; i++) {
1247                         ret = -E_WMA_DECODE;
1248                         if (wma_decode_frame(s, samples) < 0)
1249                                 goto fail;
1250                         frame_count++;
1251                         samples += s->ahi.channels * s->frame_len;
1252                 }
1253
1254                 /* we copy the end of the frame in the last frame buffer */
1255                 pos = get_bits_count(&s->gb) +
1256                         ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
1257                 s->last_bitoffset = pos & 7;
1258                 pos >>= 3;
1259                 len = buf_size - pos;
1260                 ret = -E_WMA_BAD_SUPERFRAME;
1261                 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
1262                         goto fail;
1263                 }
1264                 s->last_superframe_len = len;
1265                 memcpy(s->last_superframe, buf + pos, len);
1266         } else {
1267                 PARA_DEBUG_LOG("not using bit reservoir\n");
1268                 ret = -E_WMA_OUTPUT_SPACE;
1269                 if (s->ahi.channels * s->frame_len * sizeof(int16_t) > *data_size)
1270                         goto fail;
1271                 /* single frame decode */
1272                 ret = -E_WMA_DECODE;
1273                 if (wma_decode_frame(s, samples) < 0)
1274                         goto fail;
1275                 frame_count++;
1276                 samples += s->ahi.channels * s->frame_len;
1277         }
1278         PARA_DEBUG_LOG("frame_count: %d frame_len: %d, block_len: %d, "
1279                 "outbytes: %d, eaten: %d\n",
1280                 frame_count, s->frame_len, s->block_len,
1281                 (int8_t *) samples - (int8_t *) data, s->ahi.block_align);
1282         *data_size = (int8_t *)samples - (int8_t *)data;
1283         return s->ahi.block_align;
1284 fail:
1285         /* reset the bit reservoir on errors */
1286         s->last_superframe_len = 0;
1287         return ret;
1288 }
1289
1290 static ssize_t wmadec_convert(char *inbuffer, size_t len,
1291                 struct filter_node *fn)
1292 {
1293         int ret, out_size = fn->bufsize - fn->loaded;
1294         struct private_wmadec_data *pwd = fn->private_data;
1295
1296         if (out_size < 128 * 1024)
1297                 return 0;
1298         if (!pwd) {
1299                 ret = wma_decode_init(inbuffer, len, &pwd);
1300                 if (ret <= 0)
1301                         return ret;
1302                 fn->private_data = pwd;
1303                 fn->fc->channels = pwd->ahi.channels;
1304                 fn->fc->samplerate = pwd->ahi.sample_rate;
1305                 return pwd->ahi.header_len;
1306         }
1307         /* skip 31 bytes */
1308         if (len <= WMA_FRAME_SKIP + pwd->ahi.block_align)
1309                 return 0;
1310         ret = wma_decode_superframe(pwd, fn->buf + fn->loaded,
1311                 &out_size, (uint8_t *)inbuffer + WMA_FRAME_SKIP,
1312                 len - WMA_FRAME_SKIP);
1313         if (ret < 0)
1314                 return ret;
1315         fn->loaded += out_size;
1316         return ret + WMA_FRAME_SKIP;
1317 }
1318
1319 static void wmadec_close(struct filter_node *fn)
1320 {
1321         struct private_wmadec_data *pwd = fn->private_data;
1322         if (!pwd)
1323                 return;
1324         wmadec_cleanup(pwd);
1325         free(fn->buf);
1326         fn->buf = NULL;
1327         free(fn->private_data);
1328         fn->private_data = NULL;
1329 }
1330
1331 static void wmadec_open(struct filter_node *fn)
1332 {
1333         fn->bufsize = 1024 * 1024;
1334         fn->buf = para_malloc(fn->bufsize);
1335         fn->private_data = NULL;
1336         fn->loaded = 0;
1337 }
1338
1339 /**
1340  * The init function of the wma decoder.
1341  *
1342  * \param f Its fields are filled in by the function.
1343  */
1344 void wmadec_filter_init(struct filter *f)
1345 {
1346         f->open = wmadec_open;
1347         f->close = wmadec_close;
1348         f->convert = wmadec_convert;
1349 }