]> git.tuebingen.mpg.de Git - paraslash.git/blob - wmadec_filter.c
wma: make ->ms_stereo local to wma_decode_block().
[paraslash.git] / wmadec_filter.c
1 /*
2  * WMA compatible decoder
3  *
4  * Extracted 2009 from the mplayer source code 2009-02-10.
5  *
6  * Copyright (c) 2002 The FFmpeg Project
7  *
8  * Licensed under the GNU Lesser General Public License.
9  * For licencing details see COPYING.LIB.
10  */
11
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
13
14 /*
15  * This decoder handles Microsoft Windows Media Audio data version 2.
16  */
17
18 #define _XOPEN_SOURCE 600
19
20 #include <math.h>
21 #include <regex.h>
22 #include <sys/select.h>
23
24 #include "para.h"
25 #include "error.h"
26 #include "list.h"
27 #include "string.h"
28 #include "sched.h"
29 #include "buffer_tree.h"
30 #include "filter.h"
31 #include "portable_io.h"
32 #include "bitstream.h"
33 #include "imdct.h"
34 #include "wma.h"
35 #include "wmadata.h"
36
37
38 /* size of blocks */
39 #define BLOCK_MIN_BITS 7
40 #define BLOCK_MAX_BITS 11
41 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
42
43 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
44
45 /* XXX: find exact max size */
46 #define HIGH_BAND_MAX_SIZE 16
47
48 /* XXX: is it a suitable value ? */
49 #define MAX_CODED_SUPERFRAME_SIZE 16384
50
51 #define MAX_CHANNELS 2
52
53 #define NOISE_TAB_SIZE 8192
54
55 #define LSP_POW_BITS 7
56
57 struct private_wmadec_data {
58         /** Information contained in the audio file header. */
59         struct asf_header_info ahi;
60         struct getbit_context gb;
61         /** Whether perceptual noise is added. */
62         int use_noise_coding;
63         /** Depends on number of the bits per second and the frame length. */
64         int byte_offset_bits;
65         /** Only used if ahi->use_exp_vlc is true. */
66         struct vlc exp_vlc;
67         uint16_t exponent_bands[BLOCK_NB_SIZES][25];
68         /** The index of the first coef in high band. */
69         int high_band_start[BLOCK_NB_SIZES];
70         /** Maximal number of coded coefficients. */
71         int coefs_end[BLOCK_NB_SIZES];
72         int exponent_high_sizes[BLOCK_NB_SIZES];
73         int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
74         struct vlc hgain_vlc;
75
76         /* coded values in high bands */
77         int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
78         int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
79
80         /* there are two possible tables for spectral coefficients */
81         struct vlc coef_vlc[2];
82         uint16_t *run_table[2];
83         uint16_t *level_table[2];
84         /** Frame length in samples. */
85         int frame_len;
86         /** log2 of frame_len. */
87         int frame_len_bits;
88         /** Number of block sizes, one if !ahi->use_variable_block_len. */
89         int nb_block_sizes;
90         /* Whether to update block lengths from getbit context. */
91         bool reset_block_lengths;
92         /** log2 of current block length. */
93         int block_len_bits;
94         /** log2 of next block length. */
95         int next_block_len_bits;
96         /** log2 of previous block length. */
97         int prev_block_len_bits;
98         /** Block length in samples. */
99         int block_len;
100         /** Current position in frame. */
101         int block_pos;
102         /** True if channel is coded. */
103         uint8_t channel_coded[MAX_CHANNELS];
104         /** log2 ratio frame/exp. length. */
105         int exponents_bsize[MAX_CHANNELS];
106
107         float exponents[MAX_CHANNELS][BLOCK_MAX_SIZE];
108         float max_exponent[MAX_CHANNELS];
109         int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
110         float coefs[MAX_CHANNELS][BLOCK_MAX_SIZE];
111         float output[BLOCK_MAX_SIZE * 2];
112         struct mdct_context *mdct_ctx[BLOCK_NB_SIZES];
113         float *windows[BLOCK_NB_SIZES];
114         /** Output buffer for one frame and the last for IMDCT windowing. */
115         float frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2];
116         /** Last frame info. */
117         uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
118         int last_bitoffset;
119         int last_superframe_len;
120         float noise_table[NOISE_TAB_SIZE];
121         int noise_index;
122         float noise_mult;       /* XXX: suppress that and integrate it in the noise array */
123         /* lsp_to_curve tables */
124         float lsp_cos_table[BLOCK_MAX_SIZE];
125         float lsp_pow_e_table[256];
126         float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
127         float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
128 };
129
130 #define EXPVLCBITS 8
131 #define HGAINVLCBITS 9
132 #define VLCBITS 9
133
134 /** \cond sine_winows */
135
136 #define SINE_WINDOW(x) static float sine_ ## x[x] __a_aligned(16)
137
138 SINE_WINDOW(128);
139 SINE_WINDOW(256);
140 SINE_WINDOW(512);
141 SINE_WINDOW(1024);
142 SINE_WINDOW(2048);
143 SINE_WINDOW(4096);
144
145 static float *sine_windows[6] = {
146         sine_128, sine_256, sine_512, sine_1024, sine_2048, sine_4096
147 };
148 /** \endcond sine_windows */
149
150 /* Generate a sine window. */
151 static void sine_window_init(float *window, int n)
152 {
153         int i;
154
155         for (i = 0; i < n; i++)
156                 window[i] = sinf((i + 0.5) * (M_PI / (2.0 * n)));
157 }
158
159 static void init_coef_vlc(struct private_wmadec_data *pwd, int sidx, int didx)
160 {
161         const struct coef_vlc_table *src = coef_vlcs + sidx;
162         struct vlc *dst = pwd->coef_vlc + didx;
163         int i, l, j, k, level, n = src->n;
164
165         init_vlc(dst, VLCBITS, n, src->huffbits, src->huffcodes, 4);
166         pwd->run_table[didx] = para_malloc(n * sizeof(uint16_t));
167         pwd->level_table[didx] = para_malloc(n * sizeof(uint16_t));
168         i = 2;
169         level = 1;
170         k = 0;
171         while (i < n) {
172                 l = src->levels[k++];
173                 for (j = 0; j < l; j++) {
174                         pwd->run_table[didx][i] = j;
175                         pwd->level_table[didx][i] = level;
176                         i++;
177                 }
178                 level++;
179         }
180 }
181
182 /* compute the scale factor band sizes for each MDCT block size */
183 static void compute_scale_factor_band_sizes(struct private_wmadec_data *pwd,
184         float high_freq)
185 {
186         struct asf_header_info *ahi = &pwd->ahi;
187         int a, b, pos, lpos, k, block_len, i, j, n;
188         const uint8_t *table;
189
190         for (k = 0; k < pwd->nb_block_sizes; k++) {
191                 int exponent_size;
192
193                 block_len = pwd->frame_len >> k;
194                 table = NULL;
195                 a = pwd->frame_len_bits - BLOCK_MIN_BITS - k;
196                 if (a < 3) {
197                         if (ahi->sample_rate >= 44100)
198                                 table = exponent_band_44100[a];
199                         else if (ahi->sample_rate >= 32000)
200                                 table = exponent_band_32000[a];
201                         else if (ahi->sample_rate >= 22050)
202                                 table = exponent_band_22050[a];
203                 }
204                 if (table) {
205                         n = *table++;
206                         for (i = 0; i < n; i++)
207                                 pwd->exponent_bands[k][i] = table[i];
208                         exponent_size = n;
209                 } else {
210                         j = 0;
211                         lpos = 0;
212                         for (i = 0; i < 25; i++) {
213                                 a = wma_critical_freqs[i];
214                                 b = ahi->sample_rate;
215                                 pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
216                                 pos <<= 2;
217                                 if (pos > block_len)
218                                         pos = block_len;
219                                 if (pos > lpos)
220                                         pwd->exponent_bands[k][j++] = pos - lpos;
221                                 if (pos >= block_len)
222                                         break;
223                                 lpos = pos;
224                         }
225                         exponent_size = j;
226                 }
227
228                 /* max number of coefs */
229                 pwd->coefs_end[k] = (pwd->frame_len - ((pwd->frame_len * 9) / 100)) >> k;
230                 /* high freq computation */
231                 pwd->high_band_start[k] = (int) ((block_len * 2 * high_freq)
232                         / ahi->sample_rate + 0.5);
233                 n = exponent_size;
234                 j = 0;
235                 pos = 0;
236                 for (i = 0; i < n; i++) {
237                         int start, end;
238                         start = pos;
239                         pos += pwd->exponent_bands[k][i];
240                         end = pos;
241                         if (start < pwd->high_band_start[k])
242                                 start = pwd->high_band_start[k];
243                         if (end > pwd->coefs_end[k])
244                                 end = pwd->coefs_end[k];
245                         if (end > start)
246                                 pwd->exponent_high_bands[k][j++] = end - start;
247                 }
248                 pwd->exponent_high_sizes[k] = j;
249         }
250 }
251
252 static int wma_init(struct private_wmadec_data *pwd)
253 {
254         int i;
255         float bps1, high_freq;
256         volatile float bps;
257         int sample_rate1;
258         int coef_vlc_table;
259         struct asf_header_info *ahi = &pwd->ahi;
260         int flags2 = ahi->flags2;
261
262         if (ahi->sample_rate <= 0 || ahi->sample_rate > 50000
263                 || ahi->channels <= 0 || ahi->channels > 8
264                 || ahi->bit_rate <= 0)
265                 return -E_WMA_BAD_PARAMS;
266
267         /* compute MDCT block size */
268         if (ahi->sample_rate <= 16000)
269                 pwd->frame_len_bits = 9;
270         else if (ahi->sample_rate <= 22050)
271                 pwd->frame_len_bits = 10;
272         else
273                 pwd->frame_len_bits = 11;
274         pwd->frame_len = 1 << pwd->frame_len_bits;
275         if (pwd->ahi.use_variable_block_len) {
276                 int nb_max, nb;
277                 nb = ((flags2 >> 3) & 3) + 1;
278                 if ((ahi->bit_rate / ahi->channels) >= 32000)
279                         nb += 2;
280                 nb_max = pwd->frame_len_bits - BLOCK_MIN_BITS;
281                 if (nb > nb_max)
282                         nb = nb_max;
283                 pwd->nb_block_sizes = nb + 1;
284         } else
285                 pwd->nb_block_sizes = 1;
286
287         /* init rate dependent parameters */
288         pwd->use_noise_coding = 1;
289         high_freq = ahi->sample_rate * 0.5;
290
291         /* wma2 rates are normalized */
292         sample_rate1 = ahi->sample_rate;
293         if (sample_rate1 >= 44100)
294                 sample_rate1 = 44100;
295         else if (sample_rate1 >= 22050)
296                 sample_rate1 = 22050;
297         else if (sample_rate1 >= 16000)
298                 sample_rate1 = 16000;
299         else if (sample_rate1 >= 11025)
300                 sample_rate1 = 11025;
301         else if (sample_rate1 >= 8000)
302                 sample_rate1 = 8000;
303
304         bps = (float) ahi->bit_rate / (float) (ahi->channels * ahi->sample_rate);
305         pwd->byte_offset_bits = wma_log2((int) (bps * pwd->frame_len / 8.0 + 0.5)) + 2;
306         /*
307          * Compute high frequency value and choose if noise coding should be
308          * activated.
309          */
310         bps1 = bps;
311         if (ahi->channels == 2)
312                 bps1 = bps * 1.6;
313         if (sample_rate1 == 44100) {
314                 if (bps1 >= 0.61)
315                         pwd->use_noise_coding = 0;
316                 else
317                         high_freq = high_freq * 0.4;
318         } else if (sample_rate1 == 22050) {
319                 if (bps1 >= 1.16)
320                         pwd->use_noise_coding = 0;
321                 else if (bps1 >= 0.72)
322                         high_freq = high_freq * 0.7;
323                 else
324                         high_freq = high_freq * 0.6;
325         } else if (sample_rate1 == 16000) {
326                 if (bps > 0.5)
327                         high_freq = high_freq * 0.5;
328                 else
329                         high_freq = high_freq * 0.3;
330         } else if (sample_rate1 == 11025)
331                 high_freq = high_freq * 0.7;
332         else if (sample_rate1 == 8000) {
333                 if (bps <= 0.625)
334                         high_freq = high_freq * 0.5;
335                 else if (bps > 0.75)
336                         pwd->use_noise_coding = 0;
337                 else
338                         high_freq = high_freq * 0.65;
339         } else {
340                 if (bps >= 0.8)
341                         high_freq = high_freq * 0.75;
342                 else if (bps >= 0.6)
343                         high_freq = high_freq * 0.6;
344                 else
345                         high_freq = high_freq * 0.5;
346         }
347         PARA_INFO_LOG("channels=%u sample_rate=%u "
348                 "bitrate=%u block_align=%d\n",
349                 ahi->channels, ahi->sample_rate,
350                 ahi->bit_rate, ahi->block_align);
351         PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
352                 "high_freq=%f bitoffset=%d\n",
353                 pwd->frame_len, bps, bps1,
354                 high_freq, pwd->byte_offset_bits);
355         PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
356                 pwd->use_noise_coding, pwd->ahi.use_exp_vlc, pwd->nb_block_sizes);
357
358         compute_scale_factor_band_sizes(pwd, high_freq);
359         /* init MDCT windows : simple sinus window */
360         for (i = 0; i < pwd->nb_block_sizes; i++) {
361                 int n;
362                 n = 1 << (pwd->frame_len_bits - i);
363                 sine_window_init(sine_windows[pwd->frame_len_bits - i - 7], n);
364                 pwd->windows[i] = sine_windows[pwd->frame_len_bits - i - 7];
365         }
366
367         pwd->reset_block_lengths = true;
368
369         if (pwd->use_noise_coding) {
370                 /* init the noise generator */
371                 if (pwd->ahi.use_exp_vlc)
372                         pwd->noise_mult = 0.02;
373                 else
374                         pwd->noise_mult = 0.04;
375
376                 {
377                         unsigned int seed;
378                         float norm;
379                         seed = 1;
380                         norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd->noise_mult;
381                         for (i = 0; i < NOISE_TAB_SIZE; i++) {
382                                 seed = seed * 314159 + 1;
383                                 pwd->noise_table[i] = (float) ((int) seed) * norm;
384                         }
385                 }
386         }
387
388         /* choose the VLC tables for the coefficients */
389         coef_vlc_table = 4;
390         if (ahi->sample_rate >= 32000) {
391                 if (bps1 < 0.72)
392                         coef_vlc_table = 0;
393                 else if (bps1 < 1.16)
394                         coef_vlc_table = 2;
395         }
396         init_coef_vlc(pwd, coef_vlc_table, 0);
397         init_coef_vlc(pwd, coef_vlc_table + 1, 1);
398         return 0;
399 }
400
401 static void wma_lsp_to_curve_init(struct private_wmadec_data *pwd)
402 {
403         float wdel, a, b;
404         int i, e, m;
405
406         wdel = M_PI / pwd->frame_len;
407         for (i = 0; i < pwd->frame_len; i++)
408                 pwd->lsp_cos_table[i] = 2.0f * cos(wdel * i);
409
410         /* tables for x^-0.25 computation */
411         for (i = 0; i < 256; i++) {
412                 e = i - 126;
413                 pwd->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
414         }
415
416         /* These two tables are needed to avoid two operations in pow_m1_4. */
417         b = 1.0;
418         for (i = (1 << LSP_POW_BITS) - 1; i >= 0; i--) {
419                 m = (1 << LSP_POW_BITS) + i;
420                 a = (float) m *(0.5 / (1 << LSP_POW_BITS));
421                 a = pow(a, -0.25);
422                 pwd->lsp_pow_m_table1[i] = 2 * a - b;
423                 pwd->lsp_pow_m_table2[i] = b - a;
424                 b = a;
425         }
426 }
427
428 static int wma_decode_init(char *initial_buf, int len, struct private_wmadec_data **result)
429 {
430         struct private_wmadec_data *pwd;
431         int ret, i;
432
433         PARA_NOTICE_LOG("initial buf: %d bytes\n", len);
434         pwd = para_calloc(sizeof(*pwd));
435         ret = read_asf_header(initial_buf, len, &pwd->ahi);
436         if (ret <= 0) {
437                 free(pwd);
438                 return ret;
439         }
440
441         ret = wma_init(pwd);
442         if (ret < 0)
443                 return ret;
444         /* init MDCT */
445         for (i = 0; i < pwd->nb_block_sizes; i++) {
446                 ret = imdct_init(pwd->frame_len_bits - i + 1, &pwd->mdct_ctx[i]);
447                 if (ret < 0)
448                         return ret;
449         }
450         if (pwd->use_noise_coding) {
451                 PARA_INFO_LOG("using noise coding\n");
452                 init_vlc(&pwd->hgain_vlc, HGAINVLCBITS,
453                         sizeof(wma_hgain_huffbits), wma_hgain_huffbits,
454                         wma_hgain_huffcodes, 2);
455         }
456
457         if (pwd->ahi.use_exp_vlc) {
458                 PARA_INFO_LOG("using exp_vlc\n");
459                 init_vlc(&pwd->exp_vlc, EXPVLCBITS, sizeof(wma_scale_huffbits),
460                         wma_scale_huffbits, wma_scale_huffcodes, 4);
461         } else {
462                 PARA_INFO_LOG("using curve\n");
463                 wma_lsp_to_curve_init(pwd);
464         }
465         *result = pwd;
466         return pwd->ahi.header_len;
467 }
468
469 /**
470  * compute x^-0.25 with an exponent and mantissa table. We use linear
471  * interpolation to reduce the mantissa table size at a small speed
472  * expense (linear interpolation approximately doubles the number of
473  * bits of precision).
474  */
475 static inline float pow_m1_4(struct private_wmadec_data *pwd, float x)
476 {
477         union {
478                 float f;
479                 unsigned int v;
480         } u, t;
481         unsigned int e, m;
482         float a, b;
483
484         u.f = x;
485         e = u.v >> 23;
486         m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
487         /* build interpolation scale: 1 <= t < 2. */
488         t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
489         a = pwd->lsp_pow_m_table1[m];
490         b = pwd->lsp_pow_m_table2[m];
491         return pwd->lsp_pow_e_table[e] * (a + b * t.f);
492 }
493
494 static void wma_lsp_to_curve(struct private_wmadec_data *pwd,
495                 float *out, float *val_max_ptr, int n, float *lsp)
496 {
497         int i, j;
498         float p, q, w, v, val_max;
499
500         val_max = 0;
501         for (i = 0; i < n; i++) {
502                 p = 0.5f;
503                 q = 0.5f;
504                 w = pwd->lsp_cos_table[i];
505                 for (j = 1; j < NB_LSP_COEFS; j += 2) {
506                         q *= w - lsp[j - 1];
507                         p *= w - lsp[j];
508                 }
509                 p *= p * (2.0f - w);
510                 q *= q * (2.0f + w);
511                 v = p + q;
512                 v = pow_m1_4(pwd, v);
513                 if (v > val_max)
514                         val_max = v;
515                 out[i] = v;
516         }
517         *val_max_ptr = val_max;
518 }
519
520 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
521 static void decode_exp_lsp(struct private_wmadec_data *pwd, int ch)
522 {
523         float lsp_coefs[NB_LSP_COEFS];
524         int val, i;
525
526         for (i = 0; i < NB_LSP_COEFS; i++) {
527                 if (i == 0 || i >= 8)
528                         val = get_bits(&pwd->gb, 3);
529                 else
530                         val = get_bits(&pwd->gb, 4);
531                 lsp_coefs[i] = wma_lsp_codebook[i][val];
532         }
533
534         wma_lsp_to_curve(pwd, pwd->exponents[ch], &pwd->max_exponent[ch],
535                 pwd->block_len, lsp_coefs);
536 }
537
538 /* Decode exponents coded with VLC codes. */
539 static int decode_exp_vlc(struct private_wmadec_data *pwd, int ch)
540 {
541         int last_exp, n, code;
542         const uint16_t *ptr, *band_ptr;
543         float v, *q, max_scale, *q_end;
544
545         band_ptr = pwd->exponent_bands[pwd->frame_len_bits - pwd->block_len_bits];
546         ptr = band_ptr;
547         q = pwd->exponents[ch];
548         q_end = q + pwd->block_len;
549         max_scale = 0;
550         last_exp = 36;
551
552         while (q < q_end) {
553                 code = get_vlc(&pwd->gb, &pwd->exp_vlc);
554                 if (code < 0)
555                         return code;
556                 /* NOTE: this offset is the same as MPEG4 AAC ! */
557                 last_exp += code - 60;
558                 /* XXX: use a table */
559                 v = pow(10, last_exp * (1.0 / 16.0));
560                 if (v > max_scale)
561                         max_scale = v;
562                 n = *ptr++;
563                 do {
564                         *q++ = v;
565                 } while (--n);
566         }
567         pwd->max_exponent[ch] = max_scale;
568         return 0;
569 }
570
571 /* compute src0 * src1 + src2 */
572 static inline void vector_mult_add(float *dst, const float *src0, const float *src1,
573                 const float *src2, int len)
574 {
575         int i;
576
577         for (i = 0; i < len; i++)
578                 dst[i] = src0[i] * src1[i] + src2[i];
579 }
580
581 static inline void vector_mult_reverse(float *dst, const float *src0,
582                 const float *src1, int len)
583 {
584         int i;
585
586         src1 += len - 1;
587         for (i = 0; i < len; i++)
588                 dst[i] = src0[i] * src1[-i];
589 }
590
591 /**
592  * Apply MDCT window and add into output.
593  *
594  * We ensure that when the windows overlap their squared sum
595  * is always 1 (MDCT reconstruction rule).
596  */
597 static void wma_window(struct private_wmadec_data *pwd, float *out)
598 {
599         float *in = pwd->output;
600         int block_len, bsize, n;
601
602         /* left part */
603         if (pwd->block_len_bits <= pwd->prev_block_len_bits) {
604                 block_len = pwd->block_len;
605                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
606                 vector_mult_add(out, in, pwd->windows[bsize], out, block_len);
607         } else {
608                 block_len = 1 << pwd->prev_block_len_bits;
609                 n = (pwd->block_len - block_len) / 2;
610                 bsize = pwd->frame_len_bits - pwd->prev_block_len_bits;
611                 vector_mult_add(out + n, in + n, pwd->windows[bsize], out + n,
612                         block_len);
613                 memcpy(out + n + block_len, in + n + block_len,
614                         n * sizeof(float));
615         }
616         out += pwd->block_len;
617         in += pwd->block_len;
618         /* right part */
619         if (pwd->block_len_bits <= pwd->next_block_len_bits) {
620                 block_len = pwd->block_len;
621                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
622                 vector_mult_reverse(out, in, pwd->windows[bsize], block_len);
623         } else {
624                 block_len = 1 << pwd->next_block_len_bits;
625                 n = (pwd->block_len - block_len) / 2;
626                 bsize = pwd->frame_len_bits - pwd->next_block_len_bits;
627                 memcpy(out, in, n * sizeof(float));
628                 vector_mult_reverse(out + n, in + n, pwd->windows[bsize],
629                         block_len);
630                 memset(out + n + block_len, 0, n * sizeof(float));
631         }
632 }
633
634 static int wma_total_gain_to_bits(int total_gain)
635 {
636         if (total_gain < 15)
637                 return 13;
638         else if (total_gain < 32)
639                 return 12;
640         else if (total_gain < 40)
641                 return 11;
642         else if (total_gain < 45)
643                 return 10;
644         else
645                 return 9;
646 }
647
648 static int compute_high_band_values(struct private_wmadec_data *pwd,
649                 int bsize, int nb_coefs[MAX_CHANNELS])
650 {
651         int ch;
652
653         if (!pwd->use_noise_coding)
654                 return 0;
655         for (ch = 0; ch < pwd->ahi.channels; ch++) {
656                 int i, m, a;
657                 if (!pwd->channel_coded[ch])
658                         continue;
659                 m = pwd->exponent_high_sizes[bsize];
660                 for (i = 0; i < m; i++) {
661                         a = get_bit(&pwd->gb);
662                         pwd->high_band_coded[ch][i] = a;
663                         if (!a)
664                                 continue;
665                         nb_coefs[ch] -= pwd->exponent_high_bands[bsize][i];
666                 }
667         }
668         for (ch = 0; ch < pwd->ahi.channels; ch++) {
669                 int i, n, val;
670                 if (!pwd->channel_coded[ch])
671                         continue;
672                 n = pwd->exponent_high_sizes[bsize];
673                 val = (int)0x80000000;
674                 for (i = 0; i < n; i++) {
675                         if (!pwd->high_band_coded[ch][i])
676                                 continue;
677                         if (val == (int)0x80000000)
678                                 val = get_bits(&pwd->gb, 7) - 19;
679                         else {
680                                 int code = get_vlc(&pwd->gb, &pwd->hgain_vlc);
681                                 if (code < 0)
682                                         return code;
683                                 val += code - 18;
684                         }
685                         pwd->high_band_values[ch][i] = val;
686                 }
687         }
688         return 1;
689 }
690
691 static void compute_mdct_coefficients(struct private_wmadec_data *pwd,
692                 int bsize, int total_gain, int nb_coefs[MAX_CHANNELS])
693 {
694         int ch;
695         float mdct_norm = 1.0 / (pwd->block_len / 2);
696
697         for (ch = 0; ch < pwd->ahi.channels; ch++) {
698                 int16_t *coefs1;
699                 float *coefs, *exponents, mult, mult1, noise;
700                 int i, j, n, n1, last_high_band, esize;
701                 float exp_power[HIGH_BAND_MAX_SIZE];
702
703                 if (!pwd->channel_coded[ch])
704                         continue;
705                 coefs1 = pwd->coefs1[ch];
706                 exponents = pwd->exponents[ch];
707                 esize = pwd->exponents_bsize[ch];
708                 mult = pow(10, total_gain * 0.05) / pwd->max_exponent[ch];
709                 mult *= mdct_norm;
710                 coefs = pwd->coefs[ch];
711                 if (!pwd->use_noise_coding) {
712                         /* XXX: optimize more */
713                         n = nb_coefs[ch];
714                         for (i = 0; i < n; i++)
715                                 *coefs++ = coefs1[i] *
716                                         exponents[i << bsize >> esize] * mult;
717                         n = pwd->block_len - pwd->coefs_end[bsize];
718                         for (i = 0; i < n; i++)
719                                 *coefs++ = 0.0;
720                         continue;
721                 }
722                 n1 = pwd->exponent_high_sizes[bsize];
723                 /* compute power of high bands */
724                 exponents = pwd->exponents[ch] +
725                         (pwd->high_band_start[bsize] << bsize);
726                 last_high_band = 0; /* avoid warning */
727                 for (j = 0; j < n1; j++) {
728                         n = pwd->exponent_high_bands[
729                                 pwd->frame_len_bits - pwd->block_len_bits][j];
730                         if (pwd->high_band_coded[ch][j]) {
731                                 float e2, val;
732                                 e2 = 0;
733                                 for (i = 0; i < n; i++) {
734                                         val = exponents[i << bsize >> esize];
735                                         e2 += val * val;
736                                 }
737                                 exp_power[j] = e2 / n;
738                                 last_high_band = j;
739                         }
740                         exponents += n << bsize;
741                 }
742                 /* main freqs and high freqs */
743                 exponents = pwd->exponents[ch];
744                 for (j = -1; j < n1; j++) {
745                         if (j < 0)
746                                 n = pwd->high_band_start[bsize];
747                         else
748                                 n = pwd->exponent_high_bands[pwd->frame_len_bits
749                                         - pwd->block_len_bits][j];
750                         if (j >= 0 && pwd->high_band_coded[ch][j]) {
751                                 /* use noise with specified power */
752                                 mult1 = sqrt(exp_power[j]
753                                         / exp_power[last_high_band]);
754                                 /* XXX: use a table */
755                                 mult1 *= pow(10, pwd->high_band_values[ch][j] * 0.05);
756                                 mult1 /= (pwd->max_exponent[ch] * pwd->noise_mult);
757                                 mult1 *= mdct_norm;
758                                 for (i = 0; i < n; i++) {
759                                         noise = pwd->noise_table[pwd->noise_index];
760                                         pwd->noise_index = (pwd->noise_index + 1)
761                                                 & (NOISE_TAB_SIZE - 1);
762                                         *coefs++ = noise * exponents[
763                                                 i << bsize >> esize] * mult1;
764                                 }
765                                 exponents += n << bsize;
766                         } else {
767                                 /* coded values + small noise */
768                                 for (i = 0; i < n; i++) {
769                                         noise = pwd->noise_table[pwd->noise_index];
770                                         pwd->noise_index = (pwd->noise_index + 1)
771                                                 & (NOISE_TAB_SIZE - 1);
772                                         *coefs++ = ((*coefs1++) + noise) *
773                                                 exponents[i << bsize >> esize]
774                                                 * mult;
775                                 }
776                                 exponents += n << bsize;
777                         }
778                 }
779                 /* very high freqs: noise */
780                 n = pwd->block_len - pwd->coefs_end[bsize];
781                 mult1 = mult * exponents[(-(1 << bsize)) >> esize];
782                 for (i = 0; i < n; i++) {
783                         *coefs++ = pwd->noise_table[pwd->noise_index] * mult1;
784                         pwd->noise_index = (pwd->noise_index + 1)
785                                 & (NOISE_TAB_SIZE - 1);
786                 }
787         }
788 }
789
790 /**
791  * Returns 0 if OK, 1 if last block of frame, negative on uncorrectable
792  * errors.
793  */
794 static int wma_decode_block(struct private_wmadec_data *pwd)
795 {
796         int ret, n, v, ch, code, bsize;
797         int coef_nb_bits, total_gain;
798         int nb_coefs[MAX_CHANNELS];
799         bool ms_stereo = false; /* mid/side stereo mode */
800
801         /* compute current block length */
802         if (pwd->ahi.use_variable_block_len) {
803                 n = wma_log2(pwd->nb_block_sizes - 1) + 1;
804
805                 if (pwd->reset_block_lengths) {
806                         pwd->reset_block_lengths = false;
807                         v = get_bits(&pwd->gb, n);
808                         if (v >= pwd->nb_block_sizes)
809                                 return -E_WMA_BLOCK_SIZE;
810                         pwd->prev_block_len_bits = pwd->frame_len_bits - v;
811                         v = get_bits(&pwd->gb, n);
812                         if (v >= pwd->nb_block_sizes)
813                                 return -E_WMA_BLOCK_SIZE;
814                         pwd->block_len_bits = pwd->frame_len_bits - v;
815                 } else {
816                         /* update block lengths */
817                         pwd->prev_block_len_bits = pwd->block_len_bits;
818                         pwd->block_len_bits = pwd->next_block_len_bits;
819                 }
820                 v = get_bits(&pwd->gb, n);
821                 if (v >= pwd->nb_block_sizes)
822                         return -E_WMA_BLOCK_SIZE;
823                 pwd->next_block_len_bits = pwd->frame_len_bits - v;
824         } else {
825                 /* fixed block len */
826                 pwd->next_block_len_bits = pwd->frame_len_bits;
827                 pwd->prev_block_len_bits = pwd->frame_len_bits;
828                 pwd->block_len_bits = pwd->frame_len_bits;
829         }
830
831         /* now check if the block length is coherent with the frame length */
832         pwd->block_len = 1 << pwd->block_len_bits;
833         if ((pwd->block_pos + pwd->block_len) > pwd->frame_len)
834                 return -E_INCOHERENT_BLOCK_LEN;
835
836         if (pwd->ahi.channels == 2)
837                 ms_stereo = get_bit(&pwd->gb);
838         v = 0;
839         for (ch = 0; ch < pwd->ahi.channels; ch++) {
840                 int a = get_bit(&pwd->gb);
841                 pwd->channel_coded[ch] = a;
842                 v |= a;
843         }
844
845         bsize = pwd->frame_len_bits - pwd->block_len_bits;
846
847         /* if no channel coded, no need to go further */
848         /* XXX: fix potential framing problems */
849         if (!v)
850                 goto next;
851
852         /*
853          * Read total gain and extract corresponding number of bits for coef
854          * escape coding.
855          */
856         total_gain = 1;
857         for (;;) {
858                 int a = get_bits(&pwd->gb, 7);
859                 total_gain += a;
860                 if (a != 127)
861                         break;
862         }
863
864         coef_nb_bits = wma_total_gain_to_bits(total_gain);
865
866         /* compute number of coefficients */
867         n = pwd->coefs_end[bsize];
868         for (ch = 0; ch < pwd->ahi.channels; ch++)
869                 nb_coefs[ch] = n;
870
871         ret = compute_high_band_values(pwd, bsize, nb_coefs);
872         if (ret < 0)
873                 return ret;
874
875         /* exponents can be reused in short blocks. */
876         if ((pwd->block_len_bits == pwd->frame_len_bits) || get_bit(&pwd->gb)) {
877                 for (ch = 0; ch < pwd->ahi.channels; ch++) {
878                         if (pwd->channel_coded[ch]) {
879                                 if (pwd->ahi.use_exp_vlc) {
880                                         ret = decode_exp_vlc(pwd, ch);
881                                         if (ret < 0)
882                                                 return ret;
883                                 } else
884                                         decode_exp_lsp(pwd, ch);
885                                 pwd->exponents_bsize[ch] = bsize;
886                         }
887                 }
888         }
889
890         /* parse spectral coefficients : just RLE encoding */
891         for (ch = 0; ch < pwd->ahi.channels; ch++) {
892                 struct vlc *coef_vlc;
893                 int level, run, tindex;
894                 int16_t *ptr, *eptr;
895                 const uint16_t *level_table, *run_table;
896
897                 if (!pwd->channel_coded[ch])
898                         continue;
899                 /*
900                  * special VLC tables are used for ms stereo because there is
901                  * potentially less energy there
902                  */
903                 tindex = ch == 1 && ms_stereo;
904                 coef_vlc = &pwd->coef_vlc[tindex];
905                 run_table = pwd->run_table[tindex];
906                 level_table = pwd->level_table[tindex];
907                 /* XXX: optimize */
908                 ptr = &pwd->coefs1[ch][0];
909                 eptr = ptr + nb_coefs[ch];
910                 memset(ptr, 0, pwd->block_len * sizeof(int16_t));
911                 for (;;) {
912                         code = get_vlc(&pwd->gb, coef_vlc);
913                         if (code < 0)
914                                 return code;
915                         if (code == 1) /* EOB */
916                                 break;
917                         if (code == 0) { /* escape */
918                                 level = get_bits(&pwd->gb, coef_nb_bits);
919                                 /* reading block_len_bits would be better */
920                                 run = get_bits(&pwd->gb, pwd->frame_len_bits);
921                         } else { /* normal code */
922                                 run = run_table[code];
923                                 level = level_table[code];
924                         }
925                         if (!get_bit(&pwd->gb))
926                                 level = -level;
927                         ptr += run;
928                         if (ptr >= eptr) {
929                                 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
930                                 break;
931                         }
932                         *ptr++ = level;
933                         if (ptr >= eptr) /* EOB can be omitted */
934                                 break;
935                 }
936         }
937         compute_mdct_coefficients(pwd, bsize, total_gain, nb_coefs);
938         if (ms_stereo && pwd->channel_coded[1]) {
939                 float a, b;
940                 int i;
941                 /*
942                  * Nominal case for ms stereo: we do it before mdct.
943                  *
944                  * No need to optimize this case because it should almost never
945                  * happen.
946                  */
947                 if (!pwd->channel_coded[0]) {
948                         PARA_NOTICE_LOG("rare ms-stereo\n");
949                         memset(pwd->coefs[0], 0, sizeof(float) * pwd->block_len);
950                         pwd->channel_coded[0] = 1;
951                 }
952                 for (i = 0; i < pwd->block_len; i++) {
953                         a = pwd->coefs[0][i];
954                         b = pwd->coefs[1][i];
955                         pwd->coefs[0][i] = a + b;
956                         pwd->coefs[1][i] = a - b;
957                 }
958         }
959 next:
960         for (ch = 0; ch < pwd->ahi.channels; ch++) {
961                 int n4, idx;
962
963                 n4 = pwd->block_len / 2;
964                 if (pwd->channel_coded[ch])
965                         imdct(pwd->mdct_ctx[bsize], pwd->output, pwd->coefs[ch]);
966                 else if (!(ms_stereo && ch == 1))
967                         memset(pwd->output, 0, sizeof(pwd->output));
968
969                 /* multiply by the window and add in the frame */
970                 idx = (pwd->frame_len / 2) + pwd->block_pos - n4;
971                 wma_window(pwd, &pwd->frame_out[ch][idx]);
972         }
973
974         /* update block number */
975         pwd->block_pos += pwd->block_len;
976         if (pwd->block_pos >= pwd->frame_len)
977                 return 1;
978         else
979                 return 0;
980 }
981
982 /*
983  * Clip a signed integer value into the -32768,32767 range.
984  *
985  * \param a The value to clip.
986  *
987  * \return The clipped value.
988  */
989 static inline int16_t av_clip_int16(int a)
990 {
991         if ((a + 32768) & ~65535)
992                 return (a >> 31) ^ 32767;
993         else
994                 return a;
995 }
996
997 /* Decode a frame of frame_len samples. */
998 static int wma_decode_frame(struct private_wmadec_data *pwd, int16_t *samples)
999 {
1000         int ret, i, ch;
1001         int16_t *ptr;
1002         float *iptr;
1003
1004         /* read each block */
1005         pwd->block_pos = 0;
1006         for (;;) {
1007                 ret = wma_decode_block(pwd);
1008                 if (ret < 0)
1009                         return ret;
1010                 if (ret)
1011                         break;
1012         }
1013
1014         /* convert frame to integer */
1015         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1016                 ptr = samples + ch;
1017                 iptr = pwd->frame_out[ch];
1018
1019                 for (i = 0; i < pwd->frame_len; i++) {
1020                         *ptr = av_clip_int16(lrintf(*iptr++));
1021                         ptr += pwd->ahi.channels;
1022                 }
1023                 /* prepare for next block */
1024                 memmove(&pwd->frame_out[ch][0], &pwd->frame_out[ch][pwd->frame_len],
1025                         pwd->frame_len * sizeof(float));
1026         }
1027         return 0;
1028 }
1029
1030 static int wma_decode_superframe(struct private_wmadec_data *pwd, void *out,
1031                 int *out_size, const uint8_t *in)
1032 {
1033         int ret, in_size = pwd->ahi.packet_size - WMA_FRAME_SKIP;
1034         int16_t *samples = out;
1035
1036         init_get_bits(&pwd->gb, in, in_size);
1037         if (pwd->ahi.use_bit_reservoir) {
1038                 int i, nb_frames, bit_offset, pos, len;
1039                 uint8_t *q;
1040
1041                 /* read super frame header */
1042                 skip_bits(&pwd->gb, 4); /* super frame index */
1043                 nb_frames = get_bits(&pwd->gb, 4) - 1;
1044                 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1045                 ret = -E_WMA_OUTPUT_SPACE;
1046                 if ((nb_frames + 1) * pwd->ahi.channels * pwd->frame_len
1047                                 * sizeof(int16_t) > *out_size)
1048                         goto fail;
1049
1050                 bit_offset = get_bits(&pwd->gb, pwd->byte_offset_bits + 3);
1051
1052                 if (pwd->last_superframe_len > 0) {
1053                         /* add bit_offset bits to last frame */
1054                         ret = -E_WMA_BAD_SUPERFRAME;
1055                         if ((pwd->last_superframe_len + ((bit_offset + 7) >> 3)) >
1056                                         MAX_CODED_SUPERFRAME_SIZE)
1057                                 goto fail;
1058                         q = pwd->last_superframe + pwd->last_superframe_len;
1059                         len = bit_offset;
1060                         while (len > 7) {
1061                                 *q++ = get_bits(&pwd->gb, 8);
1062                                 len -= 8;
1063                         }
1064                         if (len > 0)
1065                                 *q++ = get_bits(&pwd->gb, len) << (8 - len);
1066
1067                         /* XXX: bit_offset bits into last frame */
1068                         init_get_bits(&pwd->gb, pwd->last_superframe,
1069                                 MAX_CODED_SUPERFRAME_SIZE);
1070                         /* skip unused bits */
1071                         if (pwd->last_bitoffset > 0)
1072                                 skip_bits(&pwd->gb, pwd->last_bitoffset);
1073                         /*
1074                          * This frame is stored in the last superframe and in
1075                          * the current one.
1076                          */
1077                         ret = wma_decode_frame(pwd, samples);
1078                         if (ret < 0)
1079                                 goto fail;
1080                         samples += pwd->ahi.channels * pwd->frame_len;
1081                 }
1082
1083                 /* read each frame starting from bit_offset */
1084                 pos = bit_offset + 4 + 4 + pwd->byte_offset_bits + 3;
1085                 init_get_bits(&pwd->gb, in + (pos >> 3),
1086                         (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3)));
1087                 len = pos & 7;
1088                 if (len > 0)
1089                         skip_bits(&pwd->gb, len);
1090
1091                 pwd->reset_block_lengths = true;
1092                 for (i = 0; i < nb_frames; i++) {
1093                         ret = wma_decode_frame(pwd, samples);
1094                         if (ret < 0)
1095                                 goto fail;
1096                         samples += pwd->ahi.channels * pwd->frame_len;
1097                 }
1098
1099                 /* we copy the end of the frame in the last frame buffer */
1100                 pos = get_bits_count(&pwd->gb) +
1101                         ((bit_offset + 4 + 4 + pwd->byte_offset_bits + 3) & ~7);
1102                 pwd->last_bitoffset = pos & 7;
1103                 pos >>= 3;
1104                 len = in_size - pos;
1105                 ret = -E_WMA_BAD_SUPERFRAME;
1106                 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0)
1107                         goto fail;
1108                 pwd->last_superframe_len = len;
1109                 memcpy(pwd->last_superframe, in + pos, len);
1110         } else {
1111                 PARA_DEBUG_LOG("not using bit reservoir\n");
1112                 ret = -E_WMA_OUTPUT_SPACE;
1113                 if (pwd->ahi.channels * pwd->frame_len * sizeof(int16_t) > *out_size)
1114                         goto fail;
1115                 /* single frame decode */
1116                 ret = wma_decode_frame(pwd, samples);
1117                 if (ret < 0)
1118                         goto fail;
1119                 samples += pwd->ahi.channels * pwd->frame_len;
1120         }
1121         PARA_DEBUG_LOG("frame_len: %d, block_len: %d, outbytes: %d, eaten: %d\n",
1122                 pwd->frame_len, pwd->block_len,
1123                 (int)((int8_t *)samples - (int8_t *)out), pwd->ahi.block_align);
1124         *out_size = (int8_t *)samples - (int8_t *)out;
1125         return pwd->ahi.block_align;
1126 fail:
1127         /* reset the bit reservoir on errors */
1128         pwd->last_superframe_len = 0;
1129         return ret;
1130 }
1131
1132 static void wmadec_close(struct filter_node *fn)
1133 {
1134         struct private_wmadec_data *pwd = fn->private_data;
1135         int i;
1136
1137         if (!pwd)
1138                 return;
1139         for (i = 0; i < pwd->nb_block_sizes; i++)
1140                 imdct_end(pwd->mdct_ctx[i]);
1141         if (pwd->ahi.use_exp_vlc)
1142                 free_vlc(&pwd->exp_vlc);
1143         if (pwd->use_noise_coding)
1144                 free_vlc(&pwd->hgain_vlc);
1145         for (i = 0; i < 2; i++) {
1146                 free_vlc(&pwd->coef_vlc[i]);
1147                 free(pwd->run_table[i]);
1148                 free(pwd->level_table[i]);
1149         }
1150         free(fn->private_data);
1151         fn->private_data = NULL;
1152 }
1153
1154 static int wmadec_execute(struct btr_node *btrn, const char *cmd, char **result)
1155 {
1156         struct filter_node *fn = btr_context(btrn);
1157         struct private_wmadec_data *pwd = fn->private_data;
1158
1159         return decoder_execute(cmd, pwd->ahi.sample_rate, pwd->ahi.channels,
1160                 result);
1161 }
1162
1163 #define WMA_OUTPUT_BUFFER_SIZE (128 * 1024)
1164
1165 static int wmadec_post_select(__a_unused struct sched *s, void *context)
1166 {
1167         struct filter_node *fn = context;
1168         int ret, converted, out_size;
1169         struct private_wmadec_data *pwd = fn->private_data;
1170         struct btr_node *btrn = fn->btrn;
1171         size_t len;
1172         char *in, *out;
1173
1174 next_buffer:
1175         converted = 0;
1176         ret = btr_node_status(btrn, fn->min_iqs, BTR_NT_INTERNAL);
1177         if (ret < 0)
1178                 goto err;
1179         if (ret == 0)
1180                 return 0;
1181         btr_merge(btrn, fn->min_iqs);
1182         len = btr_next_buffer(btrn, &in);
1183         ret = -E_WMADEC_EOF;
1184         if (len < fn->min_iqs)
1185                 goto err;
1186         if (!pwd) {
1187                 ret = wma_decode_init(in, len, &pwd);
1188                 if (ret < 0)
1189                         goto err;
1190                 if (ret == 0) {
1191                         fn->min_iqs += 4096;
1192                         goto next_buffer;
1193                 }
1194                 fn->min_iqs = 2 * pwd->ahi.packet_size;
1195                 fn->private_data = pwd;
1196                 converted = pwd->ahi.header_len;
1197                 goto success;
1198         }
1199         fn->min_iqs = pwd->ahi.packet_size;
1200         if (fn->min_iqs > len)
1201                 goto success;
1202         out_size = WMA_OUTPUT_BUFFER_SIZE;
1203         out = para_malloc(out_size);
1204         ret = wma_decode_superframe(pwd, out, &out_size,
1205                 (uint8_t *)in + WMA_FRAME_SKIP);
1206         if (ret < 0) {
1207                 free(out);
1208                 goto err;
1209         }
1210         if (out_size > 0) {
1211                 out = para_realloc(out, out_size);
1212                 btr_add_output(out, out_size, btrn);
1213         } else
1214                 free(out);
1215         converted += pwd->ahi.packet_size;
1216 success:
1217         btr_consume(btrn, converted);
1218         return 0;
1219 err:
1220         assert(ret < 0);
1221         btr_remove_node(&fn->btrn);
1222         return ret;
1223 }
1224
1225 static void wmadec_open(struct filter_node *fn)
1226 {
1227         fn->private_data = NULL;
1228         fn->min_iqs = 4096;
1229 }
1230
1231 const struct filter lsg_filter_cmd_com_wmadec_user_data = {
1232         .open = wmadec_open,
1233         .close = wmadec_close,
1234         .execute = wmadec_execute,
1235         .pre_select = generic_filter_pre_select,
1236         .post_select = wmadec_post_select,
1237 };