2 * WMA compatible decoder
4 * Extracted 2009 from the mplayer source code 2009-02-10.
6 * Copyright (c) 2002 The FFmpeg Project
8 * Licensed under the GNU Lesser General Public License.
9 * For licencing details see COPYING.LIB.
12 /** * \file wmadec_filter.c paraslash's WMA decoder. */
15 * This decoder handles Microsoft Windows Media Audio data version 2.
18 #define _XOPEN_SOURCE 600
35 #include "bitstream.h"
42 #define BLOCK_MIN_BITS 7
43 #define BLOCK_MAX_BITS 11
44 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
46 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
48 /* XXX: find exact max size */
49 #define HIGH_BAND_MAX_SIZE 16
51 /* XXX: is it a suitable value ? */
52 #define MAX_CODED_SUPERFRAME_SIZE 16384
54 #define MAX_CHANNELS 2
56 #define NOISE_TAB_SIZE 8192
58 #define LSP_POW_BITS 7
60 struct private_wmadec_data
{
61 struct asf_header_info ahi
;
62 struct getbit_context gb
;
63 int use_bit_reservoir
;
64 int use_variable_block_len
;
65 int use_exp_vlc
; ///< exponent coding: 0 = lsp, 1 = vlc + delta
66 int use_noise_coding
; ///< true if perceptual noise is added
69 int exponent_sizes
[BLOCK_NB_SIZES
];
70 uint16_t exponent_bands
[BLOCK_NB_SIZES
][25];
71 int high_band_start
[BLOCK_NB_SIZES
]; ///< index of first coef in high band
72 int coefs_start
; ///< first coded coef
73 int coefs_end
[BLOCK_NB_SIZES
]; ///< max number of coded coefficients
74 int exponent_high_sizes
[BLOCK_NB_SIZES
];
75 int exponent_high_bands
[BLOCK_NB_SIZES
][HIGH_BAND_MAX_SIZE
];
78 /* coded values in high bands */
79 int high_band_coded
[MAX_CHANNELS
][HIGH_BAND_MAX_SIZE
];
80 int high_band_values
[MAX_CHANNELS
][HIGH_BAND_MAX_SIZE
];
82 /* there are two possible tables for spectral coefficients */
83 struct vlc coef_vlc
[2];
84 uint16_t *run_table
[2];
85 uint16_t *level_table
[2];
86 uint16_t *int_table
[2];
87 const struct coef_vlc_table
*coef_vlcs
[2];
89 int frame_len
; ///< frame length in samples
90 int frame_len_bits
; ///< frame_len = 1 << frame_len_bits
91 int nb_block_sizes
; ///< number of block sizes
93 int reset_block_lengths
;
94 int block_len_bits
; ///< log2 of current block length
95 int next_block_len_bits
; ///< log2 of next block length
96 int prev_block_len_bits
; ///< log2 of prev block length
97 int block_len
; ///< block length in samples
98 int block_pos
; ///< current position in frame
99 uint8_t ms_stereo
; ///< true if mid/side stereo mode
100 uint8_t channel_coded
[MAX_CHANNELS
]; ///< true if channel is coded
101 int exponents_bsize
[MAX_CHANNELS
]; ///< log2 ratio frame/exp. length
102 float exponents
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
103 float max_exponent
[MAX_CHANNELS
];
104 int16_t coefs1
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
105 float coefs
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
106 float output
[BLOCK_MAX_SIZE
* 2];
107 struct mdct_context
*mdct_ctx
[BLOCK_NB_SIZES
];
108 float *windows
[BLOCK_NB_SIZES
];
109 /* output buffer for one frame and the last for IMDCT windowing */
110 float frame_out
[MAX_CHANNELS
][BLOCK_MAX_SIZE
* 2];
111 /* last frame info */
112 uint8_t last_superframe
[MAX_CODED_SUPERFRAME_SIZE
+ 4]; /* padding added */
114 int last_superframe_len
;
115 float noise_table
[NOISE_TAB_SIZE
];
117 float noise_mult
; /* XXX: suppress that and integrate it in the noise array */
118 /* lsp_to_curve tables */
119 float lsp_cos_table
[BLOCK_MAX_SIZE
];
120 float lsp_pow_e_table
[256];
121 float lsp_pow_m_table1
[(1 << LSP_POW_BITS
)];
122 float lsp_pow_m_table2
[(1 << LSP_POW_BITS
)];
126 #define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS)
128 #define HGAINVLCBITS 9
129 #define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS)
132 #define VLCMAX ((22+VLCBITS-1)/VLCBITS)
134 static int wmadec_cleanup(struct private_wmadec_data
*s
)
138 for (i
= 0; i
< s
->nb_block_sizes
; i
++)
139 imdct_end(s
->mdct_ctx
[i
]);
142 free_vlc(&s
->exp_vlc
);
143 if (s
->use_noise_coding
)
144 free_vlc(&s
->hgain_vlc
);
145 for (i
= 0; i
< 2; i
++) {
146 free_vlc(&s
->coef_vlc
[i
]);
147 free(s
->run_table
[i
]);
148 free(s
->level_table
[i
]);
149 free(s
->int_table
[i
]);
154 /* XXX: use same run/length optimization as mpeg decoders */
155 //FIXME maybe split decode / encode or pass flag
156 static void init_coef_vlc(struct vlc
*vlc
, uint16_t **prun_table
,
157 uint16_t **plevel_table
, uint16_t **pint_table
,
158 const struct coef_vlc_table
*vlc_table
)
160 int n
= vlc_table
->n
;
161 const uint8_t *table_bits
= vlc_table
->huffbits
;
162 const uint32_t *table_codes
= vlc_table
->huffcodes
;
163 const uint16_t *levels_table
= vlc_table
->levels
;
164 uint16_t *run_table
, *level_table
, *int_table
;
165 int i
, l
, j
, k
, level
;
167 init_vlc(vlc
, VLCBITS
, n
, table_bits
, 1, 1, table_codes
, 4, 4);
169 run_table
= para_malloc(n
* sizeof(uint16_t));
170 level_table
= para_malloc(n
* sizeof(uint16_t));
171 int_table
= para_malloc(n
* sizeof(uint16_t));
177 l
= levels_table
[k
++];
178 for (j
= 0; j
< l
; j
++) {
180 level_table
[i
] = level
;
185 *prun_table
= run_table
;
186 *plevel_table
= level_table
;
187 *pint_table
= int_table
;
190 /* compute the scale factor band sizes for each MDCT block size */
191 static void compute_scale_factor_band_sizes(struct private_wmadec_data
*s
,
194 struct asf_header_info
*ahi
= &s
->ahi
;
195 int a
, b
, pos
, lpos
, k
, block_len
, i
, j
, n
;
196 const uint8_t *table
;
199 for (k
= 0; k
< s
->nb_block_sizes
; k
++) {
200 block_len
= s
->frame_len
>> k
;
203 a
= s
->frame_len_bits
- BLOCK_MIN_BITS
- k
;
205 if (ahi
->sample_rate
>= 44100)
206 table
= exponent_band_44100
[a
];
207 else if (ahi
->sample_rate
>= 32000)
208 table
= exponent_band_32000
[a
];
209 else if (ahi
->sample_rate
>= 22050)
210 table
= exponent_band_22050
[a
];
214 for (i
= 0; i
< n
; i
++)
215 s
->exponent_bands
[k
][i
] = table
[i
];
216 s
->exponent_sizes
[k
] = n
;
220 for (i
= 0; i
< 25; i
++) {
221 a
= wma_critical_freqs
[i
];
222 b
= ahi
->sample_rate
;
223 pos
= ((block_len
* 2 * a
) + (b
<< 1)) / (4 * b
);
228 s
->exponent_bands
[k
][j
++] = pos
- lpos
;
229 if (pos
>= block_len
)
233 s
->exponent_sizes
[k
] = j
;
236 /* max number of coefs */
237 s
->coefs_end
[k
] = (s
->frame_len
- ((s
->frame_len
* 9) / 100)) >> k
;
238 /* high freq computation */
239 s
->high_band_start
[k
] = (int) ((block_len
* 2 * high_freq
)
240 / ahi
->sample_rate
+ 0.5);
241 n
= s
->exponent_sizes
[k
];
244 for (i
= 0; i
< n
; i
++) {
247 pos
+= s
->exponent_bands
[k
][i
];
249 if (start
< s
->high_band_start
[k
])
250 start
= s
->high_band_start
[k
];
251 if (end
> s
->coefs_end
[k
])
252 end
= s
->coefs_end
[k
];
254 s
->exponent_high_bands
[k
][j
++] = end
- start
;
256 s
->exponent_high_sizes
[k
] = j
;
260 static int wma_init(struct private_wmadec_data
*s
, int flags2
, struct asf_header_info
*ahi
)
263 float bps1
, high_freq
;
268 if (ahi
->sample_rate
<= 0 || ahi
->sample_rate
> 50000
269 || ahi
->channels
<= 0 || ahi
->channels
> 8
270 || ahi
->bit_rate
<= 0)
271 return -E_WMA_BAD_PARAMS
;
273 /* compute MDCT block size */
274 if (ahi
->sample_rate
<= 16000) {
275 s
->frame_len_bits
= 9;
276 } else if (ahi
->sample_rate
<= 22050) {
277 s
->frame_len_bits
= 10;
279 s
->frame_len_bits
= 11;
281 s
->frame_len
= 1 << s
->frame_len_bits
;
282 if (s
->use_variable_block_len
) {
284 nb
= ((flags2
>> 3) & 3) + 1;
285 if ((ahi
->bit_rate
/ ahi
->channels
) >= 32000)
287 nb_max
= s
->frame_len_bits
- BLOCK_MIN_BITS
;
290 s
->nb_block_sizes
= nb
+ 1;
292 s
->nb_block_sizes
= 1;
295 /* init rate dependent parameters */
296 s
->use_noise_coding
= 1;
297 high_freq
= ahi
->sample_rate
* 0.5;
299 /* wma2 rates are normalized */
300 sample_rate1
= ahi
->sample_rate
;
301 if (sample_rate1
>= 44100)
302 sample_rate1
= 44100;
303 else if (sample_rate1
>= 22050)
304 sample_rate1
= 22050;
305 else if (sample_rate1
>= 16000)
306 sample_rate1
= 16000;
307 else if (sample_rate1
>= 11025)
308 sample_rate1
= 11025;
309 else if (sample_rate1
>= 8000)
312 bps
= (float) ahi
->bit_rate
/ (float) (ahi
->channels
* ahi
->sample_rate
);
313 s
->byte_offset_bits
= wma_log2((int) (bps
* s
->frame_len
/ 8.0 + 0.5)) + 2;
315 * Compute high frequency value and choose if noise coding should be
319 if (ahi
->channels
== 2)
321 if (sample_rate1
== 44100) {
323 s
->use_noise_coding
= 0;
325 high_freq
= high_freq
* 0.4;
326 } else if (sample_rate1
== 22050) {
328 s
->use_noise_coding
= 0;
329 else if (bps1
>= 0.72)
330 high_freq
= high_freq
* 0.7;
332 high_freq
= high_freq
* 0.6;
333 } else if (sample_rate1
== 16000) {
335 high_freq
= high_freq
* 0.5;
337 high_freq
= high_freq
* 0.3;
338 } else if (sample_rate1
== 11025) {
339 high_freq
= high_freq
* 0.7;
340 } else if (sample_rate1
== 8000) {
342 high_freq
= high_freq
* 0.5;
343 } else if (bps
> 0.75) {
344 s
->use_noise_coding
= 0;
346 high_freq
= high_freq
* 0.65;
350 high_freq
= high_freq
* 0.75;
351 } else if (bps
>= 0.6) {
352 high_freq
= high_freq
* 0.6;
354 high_freq
= high_freq
* 0.5;
357 PARA_INFO_LOG("channels=%d sample_rate=%d "
358 "bitrate=%d block_align=%d\n",
359 ahi
->channels
, ahi
->sample_rate
,
360 ahi
->bit_rate
, ahi
->block_align
);
361 PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
362 "high_freq=%f bitoffset=%d\n",
363 s
->frame_len
, bps
, bps1
,
364 high_freq
, s
->byte_offset_bits
);
365 PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
366 s
->use_noise_coding
, s
->use_exp_vlc
, s
->nb_block_sizes
);
368 compute_scale_factor_band_sizes(s
, high_freq
);
369 /* init MDCT windows : simple sinus window */
370 for (i
= 0; i
< s
->nb_block_sizes
; i
++) {
372 n
= 1 << (s
->frame_len_bits
- i
);
373 sine_window_init(ff_sine_windows
[s
->frame_len_bits
- i
- 7], n
);
374 s
->windows
[i
] = ff_sine_windows
[s
->frame_len_bits
- i
- 7];
377 s
->reset_block_lengths
= 1;
379 if (s
->use_noise_coding
) {
380 /* init the noise generator */
382 s
->noise_mult
= 0.02;
384 s
->noise_mult
= 0.04;
390 norm
= (1.0 / (float) (1LL << 31)) * sqrt(3) * s
->noise_mult
;
391 for (i
= 0; i
< NOISE_TAB_SIZE
; i
++) {
392 seed
= seed
* 314159 + 1;
393 s
->noise_table
[i
] = (float) ((int) seed
) * norm
;
398 /* choose the VLC tables for the coefficients */
400 if (ahi
->sample_rate
>= 32000) {
403 else if (bps1
< 1.16)
406 s
->coef_vlcs
[0] = &coef_vlcs
[coef_vlc_table
* 2];
407 s
->coef_vlcs
[1] = &coef_vlcs
[coef_vlc_table
* 2 + 1];
408 init_coef_vlc(&s
->coef_vlc
[0], &s
->run_table
[0], &s
->level_table
[0],
409 &s
->int_table
[0], s
->coef_vlcs
[0]);
410 init_coef_vlc(&s
->coef_vlc
[1], &s
->run_table
[1], &s
->level_table
[1],
411 &s
->int_table
[1], s
->coef_vlcs
[1]);
415 static void wma_lsp_to_curve_init(struct private_wmadec_data
*s
, int frame_len
)
420 wdel
= M_PI
/ frame_len
;
421 for (i
= 0; i
< frame_len
; i
++)
422 s
->lsp_cos_table
[i
] = 2.0f
* cos(wdel
* i
);
424 /* tables for x^-0.25 computation */
425 for (i
= 0; i
< 256; i
++) {
427 s
->lsp_pow_e_table
[i
] = pow(2.0, e
* -0.25);
430 /* These two tables are needed to avoid two operations in pow_m1_4. */
432 for (i
= (1 << LSP_POW_BITS
) - 1; i
>= 0; i
--) {
433 m
= (1 << LSP_POW_BITS
) + i
;
434 a
= (float) m
*(0.5 / (1 << LSP_POW_BITS
));
436 s
->lsp_pow_m_table1
[i
] = 2 * a
- b
;
437 s
->lsp_pow_m_table2
[i
] = b
- a
;
442 static int wma_decode_init(char *initial_buf
, int len
, struct private_wmadec_data
**result
)
444 struct private_wmadec_data
*s
;
447 PARA_NOTICE_LOG("initial buf: %d bytes\n", len
);
448 s
= para_calloc(sizeof(*s
));
449 ret
= read_asf_header(initial_buf
, len
, &s
->ahi
);
455 s
->use_exp_vlc
= s
->ahi
.flags2
& 0x0001;
456 s
->use_bit_reservoir
= s
->ahi
.flags2
& 0x0002;
457 s
->use_variable_block_len
= s
->ahi
.flags2
& 0x0004;
459 ret
= wma_init(s
, s
->ahi
.flags2
, &s
->ahi
);
463 for (i
= 0; i
< s
->nb_block_sizes
; i
++) {
464 ret
= imdct_init(s
->frame_len_bits
- i
+ 1, 1, &s
->mdct_ctx
[i
]);
468 if (s
->use_noise_coding
) {
469 PARA_INFO_LOG("using noise coding\n");
470 init_vlc(&s
->hgain_vlc
, HGAINVLCBITS
,
471 sizeof(ff_wma_hgain_huffbits
), ff_wma_hgain_huffbits
,
472 1, 1, ff_wma_hgain_huffcodes
, 2, 2);
475 if (s
->use_exp_vlc
) {
476 PARA_INFO_LOG("using exp_vlc\n");
477 init_vlc(&s
->exp_vlc
, EXPVLCBITS
,
478 sizeof(ff_wma_scale_huffbits
), ff_wma_scale_huffbits
,
479 1, 1, ff_wma_scale_huffcodes
, 4, 4);
481 PARA_INFO_LOG("using curve\n");
482 wma_lsp_to_curve_init(s
, s
->frame_len
);
485 return s
->ahi
.header_len
;
489 * compute x^-0.25 with an exponent and mantissa table. We use linear
490 * interpolation to reduce the mantissa table size at a small speed
491 * expense (linear interpolation approximately doubles the number of
492 * bits of precision).
494 static inline float pow_m1_4(struct private_wmadec_data
*s
, float x
)
505 m
= (u
.v
>> (23 - LSP_POW_BITS
)) & ((1 << LSP_POW_BITS
) - 1);
506 /* build interpolation scale: 1 <= t < 2. */
507 t
.v
= ((u
.v
<< LSP_POW_BITS
) & ((1 << 23) - 1)) | (127 << 23);
508 a
= s
->lsp_pow_m_table1
[m
];
509 b
= s
->lsp_pow_m_table2
[m
];
510 return s
->lsp_pow_e_table
[e
] * (a
+ b
* t
.f
);
513 static void wma_lsp_to_curve(struct private_wmadec_data
*s
,
514 float *out
, float *val_max_ptr
, int n
, float *lsp
)
517 float p
, q
, w
, v
, val_max
;
520 for (i
= 0; i
< n
; i
++) {
523 w
= s
->lsp_cos_table
[i
];
524 for (j
= 1; j
< NB_LSP_COEFS
; j
+= 2) {
536 *val_max_ptr
= val_max
;
539 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
540 static void decode_exp_lsp(struct private_wmadec_data
*s
, int ch
)
542 float lsp_coefs
[NB_LSP_COEFS
];
545 for (i
= 0; i
< NB_LSP_COEFS
; i
++) {
546 if (i
== 0 || i
>= 8)
547 val
= get_bits(&s
->gb
, 3);
549 val
= get_bits(&s
->gb
, 4);
550 lsp_coefs
[i
] = ff_wma_lsp_codebook
[i
][val
];
553 wma_lsp_to_curve(s
, s
->exponents
[ch
], &s
->max_exponent
[ch
],
554 s
->block_len
, lsp_coefs
);
558 * Parse a vlc code, faster then get_vlc().
560 * \param bits The number of bits which will be read at once, must be
561 * identical to nb_bits in init_vlc()
563 * \param max_depth The number of times bits bits must be read to completely
564 * read the longest vlc code = (max_vlc_length + bits - 1) / bits.
566 static int get_vlc2(struct getbit_context
*s
, VLC_TYPE(*table
)[2],
567 int bits
, int max_depth
)
573 GET_VLC(code
, re
, s
, table
, bits
, max_depth
)
578 /* Decode exponents coded with VLC codes. */
579 static int decode_exp_vlc(struct private_wmadec_data
*s
, int ch
)
581 int last_exp
, n
, code
;
582 const uint16_t *ptr
, *band_ptr
;
583 float v
, *q
, max_scale
, *q_end
;
585 band_ptr
= s
->exponent_bands
[s
->frame_len_bits
- s
->block_len_bits
];
587 q
= s
->exponents
[ch
];
588 q_end
= q
+ s
->block_len
;
593 code
= get_vlc2(&s
->gb
, s
->exp_vlc
.table
, EXPVLCBITS
, EXPMAX
);
596 /* NOTE: this offset is the same as MPEG4 AAC ! */
597 last_exp
+= code
- 60;
598 /* XXX: use a table */
599 v
= pow(10, last_exp
* (1.0 / 16.0));
607 s
->max_exponent
[ch
] = max_scale
;
611 static void vector_fmul_add(float *dst
, const float *src0
, const float *src1
,
612 const float *src2
, int src3
, int len
, int step
)
615 for (i
= 0; i
< len
; i
++)
616 dst
[i
* step
] = src0
[i
] * src1
[i
] + src2
[i
] + src3
;
619 static void vector_fmul_reverse_c(float *dst
, const float *src0
,
620 const float *src1
, int len
)
624 for (i
= 0; i
< len
; i
++)
625 dst
[i
] = src0
[i
] * src1
[-i
];
629 * Apply MDCT window and add into output.
631 * We ensure that when the windows overlap their squared sum
632 * is always 1 (MDCT reconstruction rule).
634 static void wma_window(struct private_wmadec_data
*s
, float *out
)
636 float *in
= s
->output
;
637 int block_len
, bsize
, n
;
640 if (s
->block_len_bits
<= s
->prev_block_len_bits
) {
641 block_len
= s
->block_len
;
642 bsize
= s
->frame_len_bits
- s
->block_len_bits
;
644 vector_fmul_add(out
, in
, s
->windows
[bsize
],
645 out
, 0, block_len
, 1);
648 block_len
= 1 << s
->prev_block_len_bits
;
649 n
= (s
->block_len
- block_len
) / 2;
650 bsize
= s
->frame_len_bits
- s
->prev_block_len_bits
;
652 vector_fmul_add(out
+ n
, in
+ n
, s
->windows
[bsize
],
653 out
+ n
, 0, block_len
, 1);
655 memcpy(out
+ n
+ block_len
, in
+ n
+ block_len
,
663 if (s
->block_len_bits
<= s
->next_block_len_bits
) {
664 block_len
= s
->block_len
;
665 bsize
= s
->frame_len_bits
- s
->block_len_bits
;
667 vector_fmul_reverse_c(out
, in
, s
->windows
[bsize
], block_len
);
670 block_len
= 1 << s
->next_block_len_bits
;
671 n
= (s
->block_len
- block_len
) / 2;
672 bsize
= s
->frame_len_bits
- s
->next_block_len_bits
;
674 memcpy(out
, in
, n
* sizeof(float));
676 vector_fmul_reverse_c(out
+ n
, in
+ n
, s
->windows
[bsize
],
679 memset(out
+ n
+ block_len
, 0, n
* sizeof(float));
683 static int wma_total_gain_to_bits(int total_gain
)
687 else if (total_gain
< 32)
689 else if (total_gain
< 40)
691 else if (total_gain
< 45)
698 * @return 0 if OK. 1 if last block of frame. return -1 if
699 * unrecorrable error.
701 static int wma_decode_block(struct private_wmadec_data
*s
)
703 int n
, v
, ch
, code
, bsize
;
704 int coef_nb_bits
, total_gain
;
705 int nb_coefs
[MAX_CHANNELS
];
708 /* compute current block length */
709 if (s
->use_variable_block_len
) {
710 n
= wma_log2(s
->nb_block_sizes
- 1) + 1;
712 if (s
->reset_block_lengths
) {
713 s
->reset_block_lengths
= 0;
714 v
= get_bits(&s
->gb
, n
);
715 if (v
>= s
->nb_block_sizes
)
717 s
->prev_block_len_bits
= s
->frame_len_bits
- v
;
718 v
= get_bits(&s
->gb
, n
);
719 if (v
>= s
->nb_block_sizes
)
721 s
->block_len_bits
= s
->frame_len_bits
- v
;
723 /* update block lengths */
724 s
->prev_block_len_bits
= s
->block_len_bits
;
725 s
->block_len_bits
= s
->next_block_len_bits
;
727 v
= get_bits(&s
->gb
, n
);
728 if (v
>= s
->nb_block_sizes
)
730 s
->next_block_len_bits
= s
->frame_len_bits
- v
;
732 /* fixed block len */
733 s
->next_block_len_bits
= s
->frame_len_bits
;
734 s
->prev_block_len_bits
= s
->frame_len_bits
;
735 s
->block_len_bits
= s
->frame_len_bits
;
738 /* now check if the block length is coherent with the frame length */
739 s
->block_len
= 1 << s
->block_len_bits
;
740 if ((s
->block_pos
+ s
->block_len
) > s
->frame_len
)
741 return -E_INCOHERENT_BLOCK_LEN
;
743 if (s
->ahi
.channels
== 2) {
744 s
->ms_stereo
= get_bits1(&s
->gb
);
747 for (ch
= 0; ch
< s
->ahi
.channels
; ch
++) {
748 int a
= get_bits1(&s
->gb
);
749 s
->channel_coded
[ch
] = a
;
753 bsize
= s
->frame_len_bits
- s
->block_len_bits
;
755 /* if no channel coded, no need to go further */
756 /* XXX: fix potential framing problems */
760 /* read total gain and extract corresponding number of bits for
761 coef escape coding */
764 int a
= get_bits(&s
->gb
, 7);
770 coef_nb_bits
= wma_total_gain_to_bits(total_gain
);
772 /* compute number of coefficients */
773 n
= s
->coefs_end
[bsize
] - s
->coefs_start
;
774 for (ch
= 0; ch
< s
->ahi
.channels
; ch
++)
778 if (s
->use_noise_coding
) {
779 for (ch
= 0; ch
< s
->ahi
.channels
; ch
++) {
780 if (s
->channel_coded
[ch
]) {
782 m
= s
->exponent_high_sizes
[bsize
];
783 for (i
= 0; i
< m
; i
++) {
784 a
= get_bits1(&s
->gb
);
785 s
->high_band_coded
[ch
][i
] = a
;
786 /* if noise coding, the coefficients are not transmitted */
790 exponent_high_bands
[bsize
]
795 for (ch
= 0; ch
< s
->ahi
.channels
; ch
++) {
796 if (s
->channel_coded
[ch
]) {
799 n
= s
->exponent_high_sizes
[bsize
];
800 val
= (int) 0x80000000;
801 for (i
= 0; i
< n
; i
++) {
802 if (s
->high_band_coded
[ch
][i
]) {
803 if (val
== (int) 0x80000000) {
819 s
->high_band_values
[ch
][i
] =
827 /* exponents can be reused in short blocks. */
828 if ((s
->block_len_bits
== s
->frame_len_bits
) || get_bits1(&s
->gb
)) {
829 for (ch
= 0; ch
< s
->ahi
.channels
; ch
++) {
830 if (s
->channel_coded
[ch
]) {
831 if (s
->use_exp_vlc
) {
832 if (decode_exp_vlc(s
, ch
) < 0)
835 decode_exp_lsp(s
, ch
);
837 s
->exponents_bsize
[ch
] = bsize
;
842 /* parse spectral coefficients : just RLE encoding */
843 for (ch
= 0; ch
< s
->ahi
.channels
; ch
++) {
844 if (s
->channel_coded
[ch
]) {
845 struct vlc
*coef_vlc
;
846 int level
, run
, sign
, tindex
;
848 const uint16_t *level_table
, *run_table
;
850 /* special VLC tables are used for ms stereo because
851 there is potentially less energy there */
852 tindex
= (ch
== 1 && s
->ms_stereo
);
853 coef_vlc
= &s
->coef_vlc
[tindex
];
854 run_table
= s
->run_table
[tindex
];
855 level_table
= s
->level_table
[tindex
];
857 ptr
= &s
->coefs1
[ch
][0];
858 eptr
= ptr
+ nb_coefs
[ch
];
859 memset(ptr
, 0, s
->block_len
* sizeof(int16_t));
862 get_vlc2(&s
->gb
, coef_vlc
->table
, VLCBITS
,
869 } else if (code
== 0) {
871 level
= get_bits(&s
->gb
, coef_nb_bits
);
872 /* NOTE: this is rather suboptimal. reading
873 block_len_bits would be better */
875 get_bits(&s
->gb
, s
->frame_len_bits
);
878 run
= run_table
[code
];
879 level
= level_table
[code
];
881 sign
= get_bits1(&s
->gb
);
886 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
890 /* NOTE: EOB can be omitted */
899 int n4
= s
->block_len
/ 2;
900 mdct_norm
= 1.0 / (float) n4
;
903 /* finally compute the MDCT coefficients */
904 for (ch
= 0; ch
< s
->ahi
.channels
; ch
++) {
905 if (s
->channel_coded
[ch
]) {
907 float *coefs
, *exponents
, mult
, mult1
, noise
;
908 int i
, j
, n1
, last_high_band
, esize
;
909 float exp_power
[HIGH_BAND_MAX_SIZE
];
911 coefs1
= s
->coefs1
[ch
];
912 exponents
= s
->exponents
[ch
];
913 esize
= s
->exponents_bsize
[ch
];
914 mult
= pow(10, total_gain
* 0.05) / s
->max_exponent
[ch
];
916 coefs
= s
->coefs
[ch
];
917 if (s
->use_noise_coding
) {
919 /* very low freqs : noise */
920 for (i
= 0; i
< s
->coefs_start
; i
++) {
922 s
->noise_table
[s
->noise_index
] *
923 exponents
[i
<< bsize
>> esize
] *
927 1) & (NOISE_TAB_SIZE
- 1);
930 n1
= s
->exponent_high_sizes
[bsize
];
932 /* compute power of high bands */
933 exponents
= s
->exponents
[ch
] +
934 (s
->high_band_start
[bsize
] << bsize
);
935 last_high_band
= 0; /* avoid warning */
936 for (j
= 0; j
< n1
; j
++) {
937 n
= s
->exponent_high_bands
[s
->
943 if (s
->high_band_coded
[ch
][j
]) {
946 for (i
= 0; i
< n
; i
++) {
947 val
= exponents
[i
<< bsize
951 exp_power
[j
] = e2
/ n
;
954 exponents
+= n
<< bsize
;
957 /* main freqs and high freqs */
960 (s
->coefs_start
<< bsize
);
961 for (j
= -1; j
< n1
; j
++) {
963 n
= s
->high_band_start
[bsize
] -
966 n
= s
->exponent_high_bands
[s
->
973 if (j
>= 0 && s
->high_band_coded
[ch
][j
]) {
974 /* use noise with specified power */
979 /* XXX: use a table */
987 (s
->max_exponent
[ch
] *
990 for (i
= 0; i
< n
; i
++) {
1001 exponents
[i
<< bsize
1005 exponents
+= n
<< bsize
;
1007 /* coded values + small noise */
1008 for (i
= 0; i
< n
; i
++) {
1020 exponents
[i
<< bsize
1024 exponents
+= n
<< bsize
;
1028 /* very high freqs : noise */
1029 n
= s
->block_len
- s
->coefs_end
[bsize
];
1031 mult
* exponents
[((-1 << bsize
)) >> esize
];
1032 for (i
= 0; i
< n
; i
++) {
1034 s
->noise_table
[s
->noise_index
] *
1038 1) & (NOISE_TAB_SIZE
- 1);
1041 /* XXX: optimize more */
1042 for (i
= 0; i
< s
->coefs_start
; i
++)
1045 for (i
= 0; i
< n
; i
++) {
1048 exponents
[i
<< bsize
>> esize
] *
1051 n
= s
->block_len
- s
->coefs_end
[bsize
];
1052 for (i
= 0; i
< n
; i
++)
1058 if (s
->ms_stereo
&& s
->channel_coded
[1]) {
1063 * Nominal case for ms stereo: we do it before mdct.
1065 * No need to optimize this case because it should almost never
1068 if (!s
->channel_coded
[0]) {
1069 PARA_NOTICE_LOG("rare ms-stereo\n");
1070 memset(s
->coefs
[0], 0, sizeof(float) * s
->block_len
);
1071 s
->channel_coded
[0] = 1;
1073 for (i
= 0; i
< s
->block_len
; i
++) {
1076 s
->coefs
[0][i
] = a
+ b
;
1077 s
->coefs
[1][i
] = a
- b
;
1082 for (ch
= 0; ch
< s
->ahi
.channels
; ch
++) {
1086 n4
= s
->block_len
/ 2;
1087 if (s
->channel_coded
[ch
])
1088 imdct(s
->mdct_ctx
[bsize
], s
->output
, s
->coefs
[ch
]);
1089 else if (!(s
->ms_stereo
&& ch
== 1))
1090 memset(s
->output
, 0, sizeof(s
->output
));
1092 /* multiply by the window and add in the frame */
1093 index
= (s
->frame_len
/ 2) + s
->block_pos
- n4
;
1094 wma_window(s
, &s
->frame_out
[ch
][index
]);
1097 /* update block number */
1098 s
->block_pos
+= s
->block_len
;
1099 if (s
->block_pos
>= s
->frame_len
)
1106 * Clip a signed integer value into the -32768,32767 range.
1108 * \param a The value to clip.
1110 * \return The clipped value.
1112 static inline int16_t av_clip_int16(int a
)
1114 if ((a
+ 32768) & ~65535)
1115 return (a
>> 31) ^ 32767;
1120 /* Decode a frame of frame_len samples. */
1121 static int wma_decode_frame(struct private_wmadec_data
*s
, int16_t * samples
)
1123 int ret
, i
, n
, ch
, incr
;
1127 /* read each block */
1130 ret
= wma_decode_block(s
);
1137 /* convert frame to integer */
1139 incr
= s
->ahi
.channels
;
1140 for (ch
= 0; ch
< s
->ahi
.channels
; ch
++) {
1142 iptr
= s
->frame_out
[ch
];
1144 for (i
= 0; i
< n
; i
++) {
1145 *ptr
= av_clip_int16(lrintf(*iptr
++));
1148 /* prepare for next block */
1149 memmove(&s
->frame_out
[ch
][0], &s
->frame_out
[ch
][s
->frame_len
],
1150 s
->frame_len
* sizeof(float));
1155 static int wma_decode_superframe(struct private_wmadec_data
*s
, void *data
,
1156 int *data_size
, const uint8_t *buf
, int buf_size
)
1158 int ret
, nb_frames
, bit_offset
, i
, pos
, len
;
1161 static int frame_count
;
1163 if (buf_size
== 0) {
1164 s
->last_superframe_len
= 0;
1167 if (buf_size
< s
->ahi
.block_align
)
1169 buf_size
= s
->ahi
.block_align
;
1171 init_get_bits(&s
->gb
, buf
, buf_size
* 8);
1172 if (s
->use_bit_reservoir
) {
1173 /* read super frame header */
1174 skip_bits(&s
->gb
, 4); /* super frame index */
1175 nb_frames
= get_bits(&s
->gb
, 4) - 1;
1176 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1177 ret
= -E_WMA_OUTPUT_SPACE
;
1178 if ((nb_frames
+ 1) * s
->ahi
.channels
* s
->frame_len
1179 * sizeof(int16_t) > *data_size
)
1182 bit_offset
= get_bits(&s
->gb
, s
->byte_offset_bits
+ 3);
1184 if (s
->last_superframe_len
> 0) {
1185 /* add bit_offset bits to last frame */
1186 ret
= -E_WMA_BAD_SUPERFRAME
;
1187 if ((s
->last_superframe_len
+ ((bit_offset
+ 7) >> 3)) >
1188 MAX_CODED_SUPERFRAME_SIZE
)
1190 q
= s
->last_superframe
+ s
->last_superframe_len
;
1193 *q
++ = get_bits(&s
->gb
, 8);
1197 *q
++ = get_bits(&s
->gb
, len
) << (8 - len
);
1200 /* XXX: bit_offset bits into last frame */
1201 init_get_bits(&s
->gb
, s
->last_superframe
,
1202 MAX_CODED_SUPERFRAME_SIZE
* 8);
1203 /* skip unused bits */
1204 if (s
->last_bitoffset
> 0)
1205 skip_bits(&s
->gb
, s
->last_bitoffset
);
1207 * This frame is stored in the last superframe and in
1210 ret
= -E_WMA_DECODE
;
1211 if (wma_decode_frame(s
, samples
) < 0)
1214 samples
+= s
->ahi
.channels
* s
->frame_len
;
1217 /* read each frame starting from bit_offset */
1218 pos
= bit_offset
+ 4 + 4 + s
->byte_offset_bits
+ 3;
1219 init_get_bits(&s
->gb
, buf
+ (pos
>> 3),
1220 (MAX_CODED_SUPERFRAME_SIZE
- (pos
>> 3)) * 8);
1223 skip_bits(&s
->gb
, len
);
1225 s
->reset_block_lengths
= 1;
1226 for (i
= 0; i
< nb_frames
; i
++) {
1227 ret
= -E_WMA_DECODE
;
1228 if (wma_decode_frame(s
, samples
) < 0)
1231 samples
+= s
->ahi
.channels
* s
->frame_len
;
1234 /* we copy the end of the frame in the last frame buffer */
1235 pos
= get_bits_count(&s
->gb
) +
1236 ((bit_offset
+ 4 + 4 + s
->byte_offset_bits
+ 3) & ~7);
1237 s
->last_bitoffset
= pos
& 7;
1239 len
= buf_size
- pos
;
1240 ret
= -E_WMA_BAD_SUPERFRAME
;
1241 if (len
> MAX_CODED_SUPERFRAME_SIZE
|| len
< 0) {
1244 s
->last_superframe_len
= len
;
1245 memcpy(s
->last_superframe
, buf
+ pos
, len
);
1247 PARA_DEBUG_LOG("not using bit reservoir\n");
1248 ret
= -E_WMA_OUTPUT_SPACE
;
1249 if (s
->ahi
.channels
* s
->frame_len
* sizeof(int16_t) > *data_size
)
1251 /* single frame decode */
1252 ret
= -E_WMA_DECODE
;
1253 if (wma_decode_frame(s
, samples
) < 0)
1256 samples
+= s
->ahi
.channels
* s
->frame_len
;
1258 PARA_DEBUG_LOG("frame_count: %d frame_len: %d, block_len: %d, "
1259 "outbytes: %d, eaten: %d\n",
1260 frame_count
, s
->frame_len
, s
->block_len
,
1261 (int8_t *) samples
- (int8_t *) data
, s
->ahi
.block_align
);
1262 *data_size
= (int8_t *)samples
- (int8_t *)data
;
1263 return s
->ahi
.block_align
;
1265 /* reset the bit reservoir on errors */
1266 s
->last_superframe_len
= 0;
1270 static ssize_t
wmadec_convert(char *inbuffer
, size_t len
,
1271 struct filter_node
*fn
)
1273 int ret
, out_size
= fn
->bufsize
- fn
->loaded
;
1274 struct private_wmadec_data
*pwd
= fn
->private_data
;
1276 if (out_size
< 128 * 1024)
1279 ret
= wma_decode_init(inbuffer
, len
, &pwd
);
1282 fn
->private_data
= pwd
;
1283 fn
->fc
->channels
= pwd
->ahi
.channels
;
1284 fn
->fc
->samplerate
= pwd
->ahi
.sample_rate
;
1285 return pwd
->ahi
.header_len
;
1288 if (len
<= WMA_FRAME_SKIP
+ pwd
->ahi
.block_align
)
1290 ret
= wma_decode_superframe(pwd
, fn
->buf
+ fn
->loaded
,
1291 &out_size
, (uint8_t *)inbuffer
+ WMA_FRAME_SKIP
,
1292 len
- WMA_FRAME_SKIP
);
1295 fn
->loaded
+= out_size
;
1296 return ret
+ WMA_FRAME_SKIP
;
1299 static void wmadec_close(struct filter_node
*fn
)
1301 struct private_wmadec_data
*pwd
= fn
->private_data
;
1304 wmadec_cleanup(pwd
);
1307 free(fn
->private_data
);
1308 fn
->private_data
= NULL
;
1311 static void wmadec_open(struct filter_node
*fn
)
1313 fn
->bufsize
= 1024 * 1024;
1314 fn
->buf
= para_malloc(fn
->bufsize
);
1315 fn
->private_data
= NULL
;
1320 * The init function of the wma decoder.
1322 * \param f Its fields are filled in by the function.
1324 void wmadec_filter_init(struct filter
*f
)
1326 f
->open
= wmadec_open
;
1327 f
->close
= wmadec_close
;
1328 f
->convert
= wmadec_convert
;