]> git.tuebingen.mpg.de Git - paraslash.git/blob - wmadec_filter.c
wma: More trivial whitespace cleanups.
[paraslash.git] / wmadec_filter.c
1 /*
2  * WMA compatible decoder
3  *
4  * Extracted 2009 from the mplayer source code 2009-02-10.
5  *
6  * Copyright (c) 2002 The FFmpeg Project
7  *
8  * Licensed under the GNU Lesser General Public License.
9  * For licencing details see COPYING.LIB.
10  */
11
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
13
14 /*
15  * This decoder handles Microsoft Windows Media Audio data version 2.
16  */
17
18 #define _XOPEN_SOURCE 600
19
20 #include <sys/time.h>
21 #include <inttypes.h>
22 #include <stdio.h>
23 #include <stdlib.h>
24 #include <math.h>
25 #include <string.h>
26 #include <regex.h>
27 #include <sys/select.h>
28
29 #include "para.h"
30 #include "error.h"
31 #include "list.h"
32 #include "ggo.h"
33 #include "string.h"
34 #include "sched.h"
35 #include "filter.h"
36 #include "bitstream.h"
37 #include "imdct.h"
38 #include "wma.h"
39 #include "wmadata.h"
40
41
42 /* size of blocks */
43 #define BLOCK_MIN_BITS 7
44 #define BLOCK_MAX_BITS 11
45 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
46
47 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
48
49 /* XXX: find exact max size */
50 #define HIGH_BAND_MAX_SIZE 16
51
52 /* XXX: is it a suitable value ? */
53 #define MAX_CODED_SUPERFRAME_SIZE 16384
54
55 #define MAX_CHANNELS 2
56
57 #define NOISE_TAB_SIZE 8192
58
59 #define LSP_POW_BITS 7
60
61 struct private_wmadec_data {
62         struct asf_header_info ahi;
63         struct getbit_context gb;
64         /** Whether to use the bit reservoir. */
65         int use_bit_reservoir;
66         /** Whether to use variable block length. */
67         int use_variable_block_len;
68         /** Whether to use exponent coding. */
69         int use_exp_vlc;
70         /** Whether perceptual noise is added. */
71         int use_noise_coding;
72         int byte_offset_bits;
73         struct vlc exp_vlc;
74         int exponent_sizes[BLOCK_NB_SIZES];
75         uint16_t exponent_bands[BLOCK_NB_SIZES][25];
76         /** The index of the first coef in high band. */
77         int high_band_start[BLOCK_NB_SIZES];
78         int coefs_start;///< first coded coef
79         int coefs_end[BLOCK_NB_SIZES];  ///< max number of coded coefficients
80         int exponent_high_sizes[BLOCK_NB_SIZES];
81         int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
82         struct vlc hgain_vlc;
83
84         /* coded values in high bands */
85         int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
86         int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
87
88         /* there are two possible tables for spectral coefficients */
89         struct vlc coef_vlc[2];
90         uint16_t *run_table[2];
91         uint16_t *level_table[2];
92         const struct coef_vlc_table *coef_vlcs[2];
93         /* frame info */
94         int frame_len;          ///< frame length in samples
95         int frame_len_bits;     ///< frame_len = 1 << frame_len_bits
96         int nb_block_sizes;     ///< number of block sizes
97         /* block info */
98         int reset_block_lengths;
99         int block_len_bits;     ///< log2 of current block length
100         int next_block_len_bits;        ///< log2 of next block length
101         int prev_block_len_bits;        ///< log2 of prev block length
102         int block_len;          ///< block length in samples
103         int block_pos;          ///< current position in frame
104         uint8_t ms_stereo;      ///< true if mid/side stereo mode
105         uint8_t channel_coded[MAX_CHANNELS];    ///< true if channel is coded
106         int exponents_bsize[MAX_CHANNELS];      ///< log2 ratio frame/exp. length
107         float exponents[MAX_CHANNELS][BLOCK_MAX_SIZE];
108         float max_exponent[MAX_CHANNELS];
109         int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
110         float coefs[MAX_CHANNELS][BLOCK_MAX_SIZE];
111         float output[BLOCK_MAX_SIZE * 2];
112         struct mdct_context *mdct_ctx[BLOCK_NB_SIZES];
113         float *windows[BLOCK_NB_SIZES];
114         /* output buffer for one frame and the last for IMDCT windowing */
115         float frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2];
116         /* last frame info */
117         uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
118         int last_bitoffset;
119         int last_superframe_len;
120         float noise_table[NOISE_TAB_SIZE];
121         int noise_index;
122         float noise_mult;       /* XXX: suppress that and integrate it in the noise array */
123         /* lsp_to_curve tables */
124         float lsp_cos_table[BLOCK_MAX_SIZE];
125         float lsp_pow_e_table[256];
126         float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
127         float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
128 };
129
130 #define EXPVLCBITS 8
131 #define EXPMAX ((19 + EXPVLCBITS - 1) / EXPVLCBITS)
132
133 #define HGAINVLCBITS 9
134 #define HGAINMAX ((13 + HGAINVLCBITS - 1) / HGAINVLCBITS)
135
136 #define VLCBITS 9
137 #define VLCMAX ((22 + VLCBITS - 1) / VLCBITS)
138
139 #define SINE_WINDOW(x) float sine_ ## x[x] __aligned(16)
140
141 SINE_WINDOW(128);
142 SINE_WINDOW(256);
143 SINE_WINDOW(512);
144 SINE_WINDOW(1024);
145 SINE_WINDOW(2048);
146 SINE_WINDOW(4096);
147
148 static float *sine_windows[6] = {
149         sine_128, sine_256, sine_512, sine_1024, sine_2048, sine_4096
150 };
151
152 /* Generate a sine window. */
153 static void sine_window_init(float *window, int n)
154 {
155         int i;
156
157         for (i = 0; i < n; i++)
158                 window[i] = sinf((i + 0.5) * (M_PI / (2.0 * n)));
159 }
160
161 static void wmadec_cleanup(struct private_wmadec_data *pwd)
162 {
163         int i;
164
165         for (i = 0; i < pwd->nb_block_sizes; i++)
166                 imdct_end(pwd->mdct_ctx[i]);
167         if (pwd->use_exp_vlc)
168                 free_vlc(&pwd->exp_vlc);
169         if (pwd->use_noise_coding)
170                 free_vlc(&pwd->hgain_vlc);
171         for (i = 0; i < 2; i++) {
172                 free_vlc(&pwd->coef_vlc[i]);
173                 free(pwd->run_table[i]);
174                 free(pwd->level_table[i]);
175         }
176 }
177
178 static void init_coef_vlc(struct vlc *vlc, uint16_t **prun_table,
179                 uint16_t **plevel_table, const struct coef_vlc_table *vlc_table)
180 {
181         int n = vlc_table->n;
182         const uint8_t *table_bits = vlc_table->huffbits;
183         const uint32_t *table_codes = vlc_table->huffcodes;
184         const uint16_t *levels_table = vlc_table->levels;
185         uint16_t *run_table, *level_table;
186         int i, l, j, k, level;
187
188         init_vlc(vlc, VLCBITS, n, table_bits, table_codes, 4);
189
190         run_table = para_malloc(n * sizeof(uint16_t));
191         level_table = para_malloc(n * sizeof(uint16_t));
192         i = 2;
193         level = 1;
194         k = 0;
195         while (i < n) {
196                 l = levels_table[k++];
197                 for (j = 0; j < l; j++) {
198                         run_table[i] = j;
199                         level_table[i] = level;
200                         i++;
201                 }
202                 level++;
203         }
204         *prun_table = run_table;
205         *plevel_table = level_table;
206 }
207
208 /* compute the scale factor band sizes for each MDCT block size */
209 static void compute_scale_factor_band_sizes(struct private_wmadec_data *pwd,
210         float high_freq)
211 {
212         struct asf_header_info *ahi = &pwd->ahi;
213         int a, b, pos, lpos, k, block_len, i, j, n;
214         const uint8_t *table;
215
216         pwd->coefs_start = 0;
217         for (k = 0; k < pwd->nb_block_sizes; k++) {
218                 block_len = pwd->frame_len >> k;
219
220                 table = NULL;
221                 a = pwd->frame_len_bits - BLOCK_MIN_BITS - k;
222                 if (a < 3) {
223                         if (ahi->sample_rate >= 44100)
224                                 table = exponent_band_44100[a];
225                         else if (ahi->sample_rate >= 32000)
226                                 table = exponent_band_32000[a];
227                         else if (ahi->sample_rate >= 22050)
228                                 table = exponent_band_22050[a];
229                 }
230                 if (table) {
231                         n = *table++;
232                         for (i = 0; i < n; i++)
233                                 pwd->exponent_bands[k][i] = table[i];
234                         pwd->exponent_sizes[k] = n;
235                 } else {
236                         j = 0;
237                         lpos = 0;
238                         for (i = 0; i < 25; i++) {
239                                 a = wma_critical_freqs[i];
240                                 b = ahi->sample_rate;
241                                 pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
242                                 pos <<= 2;
243                                 if (pos > block_len)
244                                         pos = block_len;
245                                 if (pos > lpos)
246                                         pwd->exponent_bands[k][j++] = pos - lpos;
247                                 if (pos >= block_len)
248                                         break;
249                                 lpos = pos;
250                         }
251                         pwd->exponent_sizes[k] = j;
252                 }
253
254                 /* max number of coefs */
255                 pwd->coefs_end[k] = (pwd->frame_len - ((pwd->frame_len * 9) / 100)) >> k;
256                 /* high freq computation */
257                 pwd->high_band_start[k] = (int) ((block_len * 2 * high_freq)
258                         / ahi->sample_rate + 0.5);
259                 n = pwd->exponent_sizes[k];
260                 j = 0;
261                 pos = 0;
262                 for (i = 0; i < n; i++) {
263                         int start, end;
264                         start = pos;
265                         pos += pwd->exponent_bands[k][i];
266                         end = pos;
267                         if (start < pwd->high_band_start[k])
268                                 start = pwd->high_band_start[k];
269                         if (end > pwd->coefs_end[k])
270                                 end = pwd->coefs_end[k];
271                         if (end > start)
272                                 pwd->exponent_high_bands[k][j++] = end - start;
273                 }
274                 pwd->exponent_high_sizes[k] = j;
275         }
276 }
277
278 static int wma_init(struct private_wmadec_data *pwd)
279 {
280         int i;
281         float bps1, high_freq;
282         volatile float bps;
283         int sample_rate1;
284         int coef_vlc_table;
285         struct asf_header_info *ahi = &pwd->ahi;
286         int flags2 = ahi->flags2;
287
288         if (ahi->sample_rate <= 0 || ahi->sample_rate > 50000
289                 || ahi->channels <= 0 || ahi->channels > 8
290                 || ahi->bit_rate <= 0)
291                 return -E_WMA_BAD_PARAMS;
292
293         /* compute MDCT block size */
294         if (ahi->sample_rate <= 16000) {
295                 pwd->frame_len_bits = 9;
296         } else if (ahi->sample_rate <= 22050) {
297                 pwd->frame_len_bits = 10;
298         } else {
299                 pwd->frame_len_bits = 11;
300         }
301         pwd->frame_len = 1 << pwd->frame_len_bits;
302         if (pwd->use_variable_block_len) {
303                 int nb_max, nb;
304                 nb = ((flags2 >> 3) & 3) + 1;
305                 if ((ahi->bit_rate / ahi->channels) >= 32000)
306                         nb += 2;
307                 nb_max = pwd->frame_len_bits - BLOCK_MIN_BITS;
308                 if (nb > nb_max)
309                         nb = nb_max;
310                 pwd->nb_block_sizes = nb + 1;
311         } else
312                 pwd->nb_block_sizes = 1;
313
314         /* init rate dependent parameters */
315         pwd->use_noise_coding = 1;
316         high_freq = ahi->sample_rate * 0.5;
317
318         /* wma2 rates are normalized */
319         sample_rate1 = ahi->sample_rate;
320         if (sample_rate1 >= 44100)
321                 sample_rate1 = 44100;
322         else if (sample_rate1 >= 22050)
323                 sample_rate1 = 22050;
324         else if (sample_rate1 >= 16000)
325                 sample_rate1 = 16000;
326         else if (sample_rate1 >= 11025)
327                 sample_rate1 = 11025;
328         else if (sample_rate1 >= 8000)
329                 sample_rate1 = 8000;
330
331         bps = (float) ahi->bit_rate / (float) (ahi->channels * ahi->sample_rate);
332         pwd->byte_offset_bits = wma_log2((int) (bps * pwd->frame_len / 8.0 + 0.5)) + 2;
333         /*
334          * Compute high frequency value and choose if noise coding should be
335          * activated.
336          */
337         bps1 = bps;
338         if (ahi->channels == 2)
339                 bps1 = bps * 1.6;
340         if (sample_rate1 == 44100) {
341                 if (bps1 >= 0.61)
342                         pwd->use_noise_coding = 0;
343                 else
344                         high_freq = high_freq * 0.4;
345         } else if (sample_rate1 == 22050) {
346                 if (bps1 >= 1.16)
347                         pwd->use_noise_coding = 0;
348                 else if (bps1 >= 0.72)
349                         high_freq = high_freq * 0.7;
350                 else
351                         high_freq = high_freq * 0.6;
352         } else if (sample_rate1 == 16000) {
353                 if (bps > 0.5)
354                         high_freq = high_freq * 0.5;
355                 else
356                         high_freq = high_freq * 0.3;
357         } else if (sample_rate1 == 11025) {
358                 high_freq = high_freq * 0.7;
359         } else if (sample_rate1 == 8000) {
360                 if (bps <= 0.625) {
361                         high_freq = high_freq * 0.5;
362                 } else if (bps > 0.75) {
363                         pwd->use_noise_coding = 0;
364                 } else {
365                         high_freq = high_freq * 0.65;
366                 }
367         } else {
368                 if (bps >= 0.8) {
369                         high_freq = high_freq * 0.75;
370                 } else if (bps >= 0.6) {
371                         high_freq = high_freq * 0.6;
372                 } else {
373                         high_freq = high_freq * 0.5;
374                 }
375         }
376         PARA_INFO_LOG("channels=%d sample_rate=%d "
377                 "bitrate=%d block_align=%d\n",
378                 ahi->channels, ahi->sample_rate,
379                 ahi->bit_rate, ahi->block_align);
380         PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
381                 "high_freq=%f bitoffset=%d\n",
382                 pwd->frame_len, bps, bps1,
383                 high_freq, pwd->byte_offset_bits);
384         PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
385                 pwd->use_noise_coding, pwd->use_exp_vlc, pwd->nb_block_sizes);
386
387         compute_scale_factor_band_sizes(pwd, high_freq);
388         /* init MDCT windows : simple sinus window */
389         for (i = 0; i < pwd->nb_block_sizes; i++) {
390                 int n;
391                 n = 1 << (pwd->frame_len_bits - i);
392                 sine_window_init(sine_windows[pwd->frame_len_bits - i - 7], n);
393                 pwd->windows[i] = sine_windows[pwd->frame_len_bits - i - 7];
394         }
395
396         pwd->reset_block_lengths = 1;
397
398         if (pwd->use_noise_coding) {
399                 /* init the noise generator */
400                 if (pwd->use_exp_vlc)
401                         pwd->noise_mult = 0.02;
402                 else
403                         pwd->noise_mult = 0.04;
404
405                 {
406                         unsigned int seed;
407                         float norm;
408                         seed = 1;
409                         norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd->noise_mult;
410                         for (i = 0; i < NOISE_TAB_SIZE; i++) {
411                                 seed = seed * 314159 + 1;
412                                 pwd->noise_table[i] = (float) ((int) seed) * norm;
413                         }
414                 }
415         }
416
417         /* choose the VLC tables for the coefficients */
418         coef_vlc_table = 2;
419         if (ahi->sample_rate >= 32000) {
420                 if (bps1 < 0.72)
421                         coef_vlc_table = 0;
422                 else if (bps1 < 1.16)
423                         coef_vlc_table = 1;
424         }
425         pwd->coef_vlcs[0] = &coef_vlcs[coef_vlc_table * 2];
426         pwd->coef_vlcs[1] = &coef_vlcs[coef_vlc_table * 2 + 1];
427         init_coef_vlc(&pwd->coef_vlc[0], &pwd->run_table[0], &pwd->level_table[0],
428                 pwd->coef_vlcs[0]);
429         init_coef_vlc(&pwd->coef_vlc[1], &pwd->run_table[1], &pwd->level_table[1],
430                 pwd->coef_vlcs[1]);
431         return 0;
432 }
433
434 static void wma_lsp_to_curve_init(struct private_wmadec_data *pwd, int frame_len)
435 {
436         float wdel, a, b;
437         int i, e, m;
438
439         wdel = M_PI / frame_len;
440         for (i = 0; i < frame_len; i++)
441                 pwd->lsp_cos_table[i] = 2.0f * cos(wdel * i);
442
443         /* tables for x^-0.25 computation */
444         for (i = 0; i < 256; i++) {
445                 e = i - 126;
446                 pwd->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
447         }
448
449         /* These two tables are needed to avoid two operations in pow_m1_4. */
450         b = 1.0;
451         for (i = (1 << LSP_POW_BITS) - 1; i >= 0; i--) {
452                 m = (1 << LSP_POW_BITS) + i;
453                 a = (float) m *(0.5 / (1 << LSP_POW_BITS));
454                 a = pow(a, -0.25);
455                 pwd->lsp_pow_m_table1[i] = 2 * a - b;
456                 pwd->lsp_pow_m_table2[i] = b - a;
457                 b = a;
458         }
459 }
460
461 static int wma_decode_init(char *initial_buf, int len, struct private_wmadec_data **result)
462 {
463         struct private_wmadec_data *pwd;
464         int ret, i;
465
466         PARA_NOTICE_LOG("initial buf: %d bytes\n", len);
467         pwd = para_calloc(sizeof(*pwd));
468         ret = read_asf_header(initial_buf, len, &pwd->ahi);
469         if (ret <= 0) {
470                 free(pwd);
471                 return ret;
472         }
473
474         pwd->use_exp_vlc = pwd->ahi.flags2 & 0x0001;
475         pwd->use_bit_reservoir = pwd->ahi.flags2 & 0x0002;
476         pwd->use_variable_block_len = pwd->ahi.flags2 & 0x0004;
477
478         ret = wma_init(pwd);
479         if (ret < 0)
480                 return ret;
481         /* init MDCT */
482         for (i = 0; i < pwd->nb_block_sizes; i++) {
483                 ret = imdct_init(pwd->frame_len_bits - i + 1, &pwd->mdct_ctx[i]);
484                 if (ret < 0)
485                         return ret;
486         }
487         if (pwd->use_noise_coding) {
488                 PARA_INFO_LOG("using noise coding\n");
489                 init_vlc(&pwd->hgain_vlc, HGAINVLCBITS,
490                         sizeof(wma_hgain_huffbits), wma_hgain_huffbits,
491                         wma_hgain_huffcodes, 2);
492         }
493
494         if (pwd->use_exp_vlc) {
495                 PARA_INFO_LOG("using exp_vlc\n");
496                 init_vlc(&pwd->exp_vlc, EXPVLCBITS,
497                 sizeof(wma_scale_huffbits), wma_scale_huffbits,
498                 wma_scale_huffcodes, 4);
499         } else {
500                 PARA_INFO_LOG("using curve\n");
501                 wma_lsp_to_curve_init(pwd, pwd->frame_len);
502         }
503         *result = pwd;
504         return pwd->ahi.header_len;
505 }
506
507 /**
508  * compute x^-0.25 with an exponent and mantissa table. We use linear
509  * interpolation to reduce the mantissa table size at a small speed
510  * expense (linear interpolation approximately doubles the number of
511  * bits of precision).
512  */
513 static inline float pow_m1_4(struct private_wmadec_data *pwd, float x)
514 {
515         union {
516                 float f;
517                 unsigned int v;
518         } u, t;
519         unsigned int e, m;
520         float a, b;
521
522         u.f = x;
523         e = u.v >> 23;
524         m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
525         /* build interpolation scale: 1 <= t < 2. */
526         t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
527         a = pwd->lsp_pow_m_table1[m];
528         b = pwd->lsp_pow_m_table2[m];
529         return pwd->lsp_pow_e_table[e] * (a + b * t.f);
530 }
531
532 static void wma_lsp_to_curve(struct private_wmadec_data *pwd,
533                 float *out, float *val_max_ptr, int n, float *lsp)
534 {
535         int i, j;
536         float p, q, w, v, val_max;
537
538         val_max = 0;
539         for (i = 0; i < n; i++) {
540                 p = 0.5f;
541                 q = 0.5f;
542                 w = pwd->lsp_cos_table[i];
543                 for (j = 1; j < NB_LSP_COEFS; j += 2) {
544                         q *= w - lsp[j - 1];
545                         p *= w - lsp[j];
546                 }
547                 p *= p * (2.0f - w);
548                 q *= q * (2.0f + w);
549                 v = p + q;
550                 v = pow_m1_4(pwd, v);
551                 if (v > val_max)
552                         val_max = v;
553                 out[i] = v;
554         }
555         *val_max_ptr = val_max;
556 }
557
558 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
559 static void decode_exp_lsp(struct private_wmadec_data *pwd, int ch)
560 {
561         float lsp_coefs[NB_LSP_COEFS];
562         int val, i;
563
564         for (i = 0; i < NB_LSP_COEFS; i++) {
565                 if (i == 0 || i >= 8)
566                         val = get_bits(&pwd->gb, 3);
567                 else
568                         val = get_bits(&pwd->gb, 4);
569                 lsp_coefs[i] = wma_lsp_codebook[i][val];
570         }
571
572         wma_lsp_to_curve(pwd, pwd->exponents[ch], &pwd->max_exponent[ch],
573                 pwd->block_len, lsp_coefs);
574 }
575
576 /* Decode exponents coded with VLC codes. */
577 static int decode_exp_vlc(struct private_wmadec_data *pwd, int ch)
578 {
579         int last_exp, n, code;
580         const uint16_t *ptr, *band_ptr;
581         float v, *q, max_scale, *q_end;
582
583         band_ptr = pwd->exponent_bands[pwd->frame_len_bits - pwd->block_len_bits];
584         ptr = band_ptr;
585         q = pwd->exponents[ch];
586         q_end = q + pwd->block_len;
587         max_scale = 0;
588         last_exp = 36;
589
590         while (q < q_end) {
591                 code = get_vlc(&pwd->gb, pwd->exp_vlc.table, EXPVLCBITS, EXPMAX);
592                 if (code < 0)
593                         return -1;
594                 /* NOTE: this offset is the same as MPEG4 AAC ! */
595                 last_exp += code - 60;
596                 /* XXX: use a table */
597                 v = pow(10, last_exp * (1.0 / 16.0));
598                 if (v > max_scale)
599                         max_scale = v;
600                 n = *ptr++;
601                 do {
602                         *q++ = v;
603                 } while (--n);
604         }
605         pwd->max_exponent[ch] = max_scale;
606         return 0;
607 }
608
609 /* compute src0 * src1 + src2 */
610 static inline void vector_mult_add(float *dst, const float *src0, const float *src1,
611                 const float *src2, int len)
612 {
613         int i;
614
615         for (i = 0; i < len; i++)
616                 dst[i] = src0[i] * src1[i] + src2[i];
617 }
618
619 static inline void vector_mult_reverse(float *dst, const float *src0,
620                 const float *src1, int len)
621 {
622         int i;
623
624         src1 += len - 1;
625         for (i = 0; i < len; i++)
626                 dst[i] = src0[i] * src1[-i];
627 }
628
629 /**
630  * Apply MDCT window and add into output.
631  *
632  * We ensure that when the windows overlap their squared sum
633  * is always 1 (MDCT reconstruction rule).
634  */
635 static void wma_window(struct private_wmadec_data *pwd, float *out)
636 {
637         float *in = pwd->output;
638         int block_len, bsize, n;
639
640         /* left part */
641         if (pwd->block_len_bits <= pwd->prev_block_len_bits) {
642                 block_len = pwd->block_len;
643                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
644                 vector_mult_add(out, in, pwd->windows[bsize], out, block_len);
645         } else {
646                 block_len = 1 << pwd->prev_block_len_bits;
647                 n = (pwd->block_len - block_len) / 2;
648                 bsize = pwd->frame_len_bits - pwd->prev_block_len_bits;
649                 vector_mult_add(out + n, in + n, pwd->windows[bsize], out + n,
650                         block_len);
651                 memcpy(out + n + block_len, in + n + block_len,
652                         n * sizeof(float));
653         }
654         out += pwd->block_len;
655         in += pwd->block_len;
656         /* right part */
657         if (pwd->block_len_bits <= pwd->next_block_len_bits) {
658                 block_len = pwd->block_len;
659                 bsize = pwd->frame_len_bits - pwd->block_len_bits;
660                 vector_mult_reverse(out, in, pwd->windows[bsize], block_len);
661         } else {
662                 block_len = 1 << pwd->next_block_len_bits;
663                 n = (pwd->block_len - block_len) / 2;
664                 bsize = pwd->frame_len_bits - pwd->next_block_len_bits;
665                 memcpy(out, in, n * sizeof(float));
666                 vector_mult_reverse(out + n, in + n, pwd->windows[bsize],
667                         block_len);
668                 memset(out + n + block_len, 0, n * sizeof(float));
669         }
670 }
671
672 static int wma_total_gain_to_bits(int total_gain)
673 {
674         if (total_gain < 15)
675                 return 13;
676         else if (total_gain < 32)
677                 return 12;
678         else if (total_gain < 40)
679                 return 11;
680         else if (total_gain < 45)
681                 return 10;
682         else
683                 return 9;
684 }
685
686 static int compute_high_band_values(struct private_wmadec_data *pwd,
687                 int bsize, int nb_coefs[MAX_CHANNELS])
688 {
689         int ch;
690
691         if (!pwd->use_noise_coding)
692                 return 0;
693         for (ch = 0; ch < pwd->ahi.channels; ch++) {
694                 int i, m, a;
695                 if (!pwd->channel_coded[ch])
696                         continue;
697                 m = pwd->exponent_high_sizes[bsize];
698                 for (i = 0; i < m; i++) {
699                         a = get_bit(&pwd->gb);
700                         pwd->high_band_coded[ch][i] = a;
701                         if (!a)
702                                 continue;
703                         nb_coefs[ch] -= pwd->exponent_high_bands[bsize][i];
704                 }
705         }
706         for (ch = 0; ch < pwd->ahi.channels; ch++) {
707                 int i, n, val;
708                 if (!pwd->channel_coded[ch])
709                         continue;
710                 n = pwd->exponent_high_sizes[bsize];
711                 val = (int)0x80000000;
712                 for (i = 0; i < n; i++) {
713                         if (!pwd->high_band_coded[ch][i])
714                                 continue;
715                         if (val == (int)0x80000000)
716                                 val = get_bits(&pwd->gb, 7) - 19;
717                         else {
718                                 int code = get_vlc(&pwd->gb,
719                                         pwd->hgain_vlc.table, HGAINVLCBITS,
720                                         HGAINMAX);
721                                 if (code < 0)
722                                         return -1;
723                                 val += code - 18;
724                         }
725                         pwd->high_band_values[ch][i] = val;
726                 }
727         }
728         return 1;
729 }
730
731 static void compute_mdct_coefficients(struct private_wmadec_data *pwd,
732                 int bsize, int total_gain, int nb_coefs[MAX_CHANNELS])
733 {
734         int ch;
735         float mdct_norm = 1.0 / (pwd->block_len / 2);
736
737         for (ch = 0; ch < pwd->ahi.channels; ch++) {
738                 int16_t *coefs1;
739                 float *coefs, *exponents, mult, mult1, noise;
740                 int i, j, n, n1, last_high_band, esize;
741                 float exp_power[HIGH_BAND_MAX_SIZE];
742
743                 if (!pwd->channel_coded[ch])
744                         continue;
745                 coefs1 = pwd->coefs1[ch];
746                 exponents = pwd->exponents[ch];
747                 esize = pwd->exponents_bsize[ch];
748                 mult = pow(10, total_gain * 0.05) / pwd->max_exponent[ch];
749                 mult *= mdct_norm;
750                 coefs = pwd->coefs[ch];
751                 if (!pwd->use_noise_coding) {
752                         /* XXX: optimize more */
753                         for (i = 0; i < pwd->coefs_start; i++)
754                                 *coefs++ = 0.0;
755                         n = nb_coefs[ch];
756                         for (i = 0; i < n; i++)
757                                 *coefs++ = coefs1[i] *
758                                         exponents[i << bsize >> esize] * mult;
759                         n = pwd->block_len - pwd->coefs_end[bsize];
760                         for (i = 0; i < n; i++)
761                                 *coefs++ = 0.0;
762                         continue;
763                 }
764                 mult1 = mult;
765                 /* very low freqs: noise */
766                 for (i = 0; i < pwd->coefs_start; i++) {
767                         *coefs++ = pwd->noise_table[pwd->noise_index] *
768                                 exponents[i << bsize >> esize] * mult1;
769                         pwd->noise_index = (pwd->noise_index + 1) &
770                                 (NOISE_TAB_SIZE - 1);
771                 }
772                 n1 = pwd->exponent_high_sizes[bsize];
773                 /* compute power of high bands */
774                 exponents = pwd->exponents[ch] +
775                         (pwd->high_band_start[bsize] << bsize);
776                 last_high_band = 0; /* avoid warning */
777                 for (j = 0; j < n1; j++) {
778                         n = pwd->exponent_high_bands[
779                                 pwd->frame_len_bits - pwd->block_len_bits][j];
780                         if (pwd->high_band_coded[ch][j]) {
781                                 float e2, val;
782                                 e2 = 0;
783                                 for (i = 0; i < n; i++) {
784                                         val = exponents[i << bsize >> esize];
785                                         e2 += val * val;
786                                 }
787                                 exp_power[j] = e2 / n;
788                                 last_high_band = j;
789                         }
790                         exponents += n << bsize;
791                 }
792                 /* main freqs and high freqs */
793                 exponents = pwd->exponents[ch] + (pwd->coefs_start << bsize);
794                 for (j = -1; j < n1; j++) {
795                         if (j < 0)
796                                 n = pwd->high_band_start[bsize]
797                                         - pwd->coefs_start;
798                         else
799                                 n = pwd->exponent_high_bands[pwd->frame_len_bits
800                                         - pwd->block_len_bits][j];
801                         if (j >= 0 && pwd->high_band_coded[ch][j]) {
802                                 /* use noise with specified power */
803                                 mult1 = sqrt(exp_power[j]
804                                         / exp_power[last_high_band]);
805                                 /* XXX: use a table */
806                                 mult1 = mult1 * pow(10,
807                                         pwd->high_band_values[ch][j] * 0.05);
808                                 mult1 /= (pwd->max_exponent[ch] * pwd->noise_mult);
809                                 mult1 *= mdct_norm;
810                                 for (i = 0; i < n; i++) {
811                                         noise = pwd->noise_table[pwd->noise_index];
812                                         pwd->noise_index = (pwd->noise_index + 1)
813                                                 & (NOISE_TAB_SIZE - 1);
814                                         *coefs++ = noise * exponents[
815                                                 i << bsize >> esize] * mult1;
816                                 }
817                                 exponents += n << bsize;
818                         } else {
819                                 /* coded values + small noise */
820                                 for (i = 0; i < n; i++) {
821                                         noise = pwd->noise_table[pwd->noise_index];
822                                         pwd->noise_index = (pwd->noise_index + 1)
823                                                 & (NOISE_TAB_SIZE - 1);
824                                         *coefs++ = ((*coefs1++) + noise) *
825                                                 exponents[i << bsize >> esize]
826                                                 * mult;
827                                 }
828                                 exponents += n << bsize;
829                         }
830                 }
831                 /* very high freqs: noise */
832                 n = pwd->block_len - pwd->coefs_end[bsize];
833                 mult1 = mult * exponents[((-1 << bsize)) >> esize];
834                 for (i = 0; i < n; i++) {
835                         *coefs++ = pwd->noise_table[pwd->noise_index] * mult1;
836                         pwd->noise_index = (pwd->noise_index + 1)
837                                 & (NOISE_TAB_SIZE - 1);
838                 }
839         }
840 }
841
842 /**
843  * @return 0 if OK. 1 if last block of frame. return -1 if
844  * unrecorrable error.
845  */
846 static int wma_decode_block(struct private_wmadec_data *pwd)
847 {
848         int n, v, ch, code, bsize;
849         int coef_nb_bits, total_gain;
850         int nb_coefs[MAX_CHANNELS];
851
852         /* compute current block length */
853         if (pwd->use_variable_block_len) {
854                 n = wma_log2(pwd->nb_block_sizes - 1) + 1;
855
856                 if (pwd->reset_block_lengths) {
857                         pwd->reset_block_lengths = 0;
858                         v = get_bits(&pwd->gb, n);
859                         if (v >= pwd->nb_block_sizes)
860                                 return -1;
861                         pwd->prev_block_len_bits = pwd->frame_len_bits - v;
862                         v = get_bits(&pwd->gb, n);
863                         if (v >= pwd->nb_block_sizes)
864                                 return -1;
865                         pwd->block_len_bits = pwd->frame_len_bits - v;
866                 } else {
867                         /* update block lengths */
868                         pwd->prev_block_len_bits = pwd->block_len_bits;
869                         pwd->block_len_bits = pwd->next_block_len_bits;
870                 }
871                 v = get_bits(&pwd->gb, n);
872                 if (v >= pwd->nb_block_sizes)
873                         return -1;
874                 pwd->next_block_len_bits = pwd->frame_len_bits - v;
875         } else {
876                 /* fixed block len */
877                 pwd->next_block_len_bits = pwd->frame_len_bits;
878                 pwd->prev_block_len_bits = pwd->frame_len_bits;
879                 pwd->block_len_bits = pwd->frame_len_bits;
880         }
881
882         /* now check if the block length is coherent with the frame length */
883         pwd->block_len = 1 << pwd->block_len_bits;
884         if ((pwd->block_pos + pwd->block_len) > pwd->frame_len)
885                 return -E_INCOHERENT_BLOCK_LEN;
886
887         if (pwd->ahi.channels == 2)
888                 pwd->ms_stereo = get_bit(&pwd->gb);
889         v = 0;
890         for (ch = 0; ch < pwd->ahi.channels; ch++) {
891                 int a = get_bit(&pwd->gb);
892                 pwd->channel_coded[ch] = a;
893                 v |= a;
894         }
895
896         bsize = pwd->frame_len_bits - pwd->block_len_bits;
897
898         /* if no channel coded, no need to go further */
899         /* XXX: fix potential framing problems */
900         if (!v)
901                 goto next;
902
903         /*
904          * Read total gain and extract corresponding number of bits for coef
905          * escape coding.
906          */
907         total_gain = 1;
908         for (;;) {
909                 int a = get_bits(&pwd->gb, 7);
910                 total_gain += a;
911                 if (a != 127)
912                         break;
913         }
914
915         coef_nb_bits = wma_total_gain_to_bits(total_gain);
916
917         /* compute number of coefficients */
918         n = pwd->coefs_end[bsize] - pwd->coefs_start;
919         for (ch = 0; ch < pwd->ahi.channels; ch++)
920                 nb_coefs[ch] = n;
921
922         if (compute_high_band_values(pwd, bsize, nb_coefs) < 0)
923                 return -1;
924
925         /* exponents can be reused in short blocks. */
926         if ((pwd->block_len_bits == pwd->frame_len_bits) || get_bit(&pwd->gb)) {
927                 for (ch = 0; ch < pwd->ahi.channels; ch++) {
928                         if (pwd->channel_coded[ch]) {
929                                 if (pwd->use_exp_vlc) {
930                                         if (decode_exp_vlc(pwd, ch) < 0)
931                                                 return -1;
932                                 } else {
933                                         decode_exp_lsp(pwd, ch);
934                                 }
935                                 pwd->exponents_bsize[ch] = bsize;
936                         }
937                 }
938         }
939
940         /* parse spectral coefficients : just RLE encoding */
941         for (ch = 0; ch < pwd->ahi.channels; ch++) {
942                 struct vlc *coef_vlc;
943                 int level, run, tindex;
944                 int16_t *ptr, *eptr;
945                 const uint16_t *level_table, *run_table;
946
947                 if (!pwd->channel_coded[ch])
948                         continue;
949                 /*
950                  * special VLC tables are used for ms stereo because there is
951                  * potentially less energy there
952                  */
953                 tindex = (ch == 1 && pwd->ms_stereo);
954                 coef_vlc = &pwd->coef_vlc[tindex];
955                 run_table = pwd->run_table[tindex];
956                 level_table = pwd->level_table[tindex];
957                 /* XXX: optimize */
958                 ptr = &pwd->coefs1[ch][0];
959                 eptr = ptr + nb_coefs[ch];
960                 memset(ptr, 0, pwd->block_len * sizeof(int16_t));
961                 for (;;) {
962                         code = get_vlc(&pwd->gb, coef_vlc->table,
963                                 VLCBITS, VLCMAX);
964                         if (code < 0)
965                                 return -1;
966                         if (code == 1) /* EOB */
967                                 break;
968                         if (code == 0) { /* escape */
969                                 level = get_bits(&pwd->gb, coef_nb_bits);
970                                 /* reading block_len_bits would be better */
971                                 run = get_bits(&pwd->gb, pwd->frame_len_bits);
972                         } else { /* normal code */
973                                 run = run_table[code];
974                                 level = level_table[code];
975                         }
976                         if (!get_bit(&pwd->gb))
977                                 level = -level;
978                         ptr += run;
979                         if (ptr >= eptr) {
980                                 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
981                                 break;
982                         }
983                         *ptr++ = level;
984                         if (ptr >= eptr) /* EOB can be omitted */
985                                 break;
986                 }
987         }
988         compute_mdct_coefficients(pwd, bsize, total_gain, nb_coefs);
989         if (pwd->ms_stereo && pwd->channel_coded[1]) {
990                 float a, b;
991                 int i;
992                 /*
993                  * Nominal case for ms stereo: we do it before mdct.
994                  *
995                  * No need to optimize this case because it should almost never
996                  * happen.
997                  */
998                 if (!pwd->channel_coded[0]) {
999                         PARA_NOTICE_LOG("rare ms-stereo\n");
1000                         memset(pwd->coefs[0], 0, sizeof(float) * pwd->block_len);
1001                         pwd->channel_coded[0] = 1;
1002                 }
1003                 for (i = 0; i < pwd->block_len; i++) {
1004                         a = pwd->coefs[0][i];
1005                         b = pwd->coefs[1][i];
1006                         pwd->coefs[0][i] = a + b;
1007                         pwd->coefs[1][i] = a - b;
1008                 }
1009         }
1010 next:
1011         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1012                 int n4, index;
1013
1014                 n = pwd->block_len;
1015                 n4 = pwd->block_len / 2;
1016                 if (pwd->channel_coded[ch])
1017                         imdct(pwd->mdct_ctx[bsize], pwd->output, pwd->coefs[ch]);
1018                 else if (!(pwd->ms_stereo && ch == 1))
1019                         memset(pwd->output, 0, sizeof(pwd->output));
1020
1021                 /* multiply by the window and add in the frame */
1022                 index = (pwd->frame_len / 2) + pwd->block_pos - n4;
1023                 wma_window(pwd, &pwd->frame_out[ch][index]);
1024         }
1025
1026         /* update block number */
1027         pwd->block_pos += pwd->block_len;
1028         if (pwd->block_pos >= pwd->frame_len)
1029                 return 1;
1030         else
1031                 return 0;
1032 }
1033
1034 /*
1035  * Clip a signed integer value into the -32768,32767 range.
1036  *
1037  * \param a The value to clip.
1038  *
1039  * \return The clipped value.
1040  */
1041 static inline int16_t av_clip_int16(int a)
1042 {
1043         if ((a + 32768) & ~65535)
1044                 return (a >> 31) ^ 32767;
1045         else
1046                 return a;
1047 }
1048
1049 /* Decode a frame of frame_len samples. */
1050 static int wma_decode_frame(struct private_wmadec_data *pwd, int16_t *samples)
1051 {
1052         int ret, i, n, ch, incr;
1053         int16_t *ptr;
1054         float *iptr;
1055
1056         /* read each block */
1057         pwd->block_pos = 0;
1058         for (;;) {
1059                 ret = wma_decode_block(pwd);
1060                 if (ret < 0)
1061                         return -1;
1062                 if (ret)
1063                         break;
1064         }
1065
1066         /* convert frame to integer */
1067         n = pwd->frame_len;
1068         incr = pwd->ahi.channels;
1069         for (ch = 0; ch < pwd->ahi.channels; ch++) {
1070                 ptr = samples + ch;
1071                 iptr = pwd->frame_out[ch];
1072
1073                 for (i = 0; i < n; i++) {
1074                         *ptr = av_clip_int16(lrintf(*iptr++));
1075                         ptr += incr;
1076                 }
1077                 /* prepare for next block */
1078                 memmove(&pwd->frame_out[ch][0], &pwd->frame_out[ch][pwd->frame_len],
1079                         pwd->frame_len * sizeof(float));
1080         }
1081         return 0;
1082 }
1083
1084 static int wma_decode_superframe(struct private_wmadec_data *pwd, void *data,
1085                 int *data_size, const uint8_t *buf, int buf_size)
1086 {
1087         int ret;
1088         int16_t *samples;
1089         static int frame_count;
1090
1091         if (buf_size == 0) {
1092                 pwd->last_superframe_len = 0;
1093                 return 0;
1094         }
1095         if (buf_size < pwd->ahi.block_align)
1096                 return 0;
1097         buf_size = pwd->ahi.block_align;
1098         samples = data;
1099         init_get_bits(&pwd->gb, buf, buf_size);
1100         if (pwd->use_bit_reservoir) {
1101                 int i, nb_frames, bit_offset, pos, len;
1102                 uint8_t *q;
1103
1104                 /* read super frame header */
1105                 skip_bits(&pwd->gb, 4); /* super frame index */
1106                 nb_frames = get_bits(&pwd->gb, 4) - 1;
1107                 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1108                 ret = -E_WMA_OUTPUT_SPACE;
1109                 if ((nb_frames + 1) * pwd->ahi.channels * pwd->frame_len
1110                                 * sizeof(int16_t) > *data_size)
1111                         goto fail;
1112
1113                 bit_offset = get_bits(&pwd->gb, pwd->byte_offset_bits + 3);
1114
1115                 if (pwd->last_superframe_len > 0) {
1116                         /* add bit_offset bits to last frame */
1117                         ret = -E_WMA_BAD_SUPERFRAME;
1118                         if ((pwd->last_superframe_len + ((bit_offset + 7) >> 3)) >
1119                                         MAX_CODED_SUPERFRAME_SIZE)
1120                                 goto fail;
1121                         q = pwd->last_superframe + pwd->last_superframe_len;
1122                         len = bit_offset;
1123                         while (len > 7) {
1124                                 *q++ = get_bits(&pwd->gb, 8);
1125                                 len -= 8;
1126                         }
1127                         if (len > 0)
1128                                 *q++ = get_bits(&pwd->gb, len) << (8 - len);
1129
1130                         /* XXX: bit_offset bits into last frame */
1131                         init_get_bits(&pwd->gb, pwd->last_superframe,
1132                                 MAX_CODED_SUPERFRAME_SIZE);
1133                         /* skip unused bits */
1134                         if (pwd->last_bitoffset > 0)
1135                                 skip_bits(&pwd->gb, pwd->last_bitoffset);
1136                         /*
1137                          * This frame is stored in the last superframe and in
1138                          * the current one.
1139                          */
1140                         ret = -E_WMA_DECODE;
1141                         if (wma_decode_frame(pwd, samples) < 0)
1142                                 goto fail;
1143                         frame_count++;
1144                         samples += pwd->ahi.channels * pwd->frame_len;
1145                 }
1146
1147                 /* read each frame starting from bit_offset */
1148                 pos = bit_offset + 4 + 4 + pwd->byte_offset_bits + 3;
1149                 init_get_bits(&pwd->gb, buf + (pos >> 3),
1150                         (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3)));
1151                 len = pos & 7;
1152                 if (len > 0)
1153                         skip_bits(&pwd->gb, len);
1154
1155                 pwd->reset_block_lengths = 1;
1156                 for (i = 0; i < nb_frames; i++) {
1157                         ret = -E_WMA_DECODE;
1158                         if (wma_decode_frame(pwd, samples) < 0)
1159                                 goto fail;
1160                         frame_count++;
1161                         samples += pwd->ahi.channels * pwd->frame_len;
1162                 }
1163
1164                 /* we copy the end of the frame in the last frame buffer */
1165                 pos = get_bits_count(&pwd->gb) +
1166                         ((bit_offset + 4 + 4 + pwd->byte_offset_bits + 3) & ~7);
1167                 pwd->last_bitoffset = pos & 7;
1168                 pos >>= 3;
1169                 len = buf_size - pos;
1170                 ret = -E_WMA_BAD_SUPERFRAME;
1171                 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0)
1172                         goto fail;
1173                 pwd->last_superframe_len = len;
1174                 memcpy(pwd->last_superframe, buf + pos, len);
1175         } else {
1176                 PARA_DEBUG_LOG("not using bit reservoir\n");
1177                 ret = -E_WMA_OUTPUT_SPACE;
1178                 if (pwd->ahi.channels * pwd->frame_len * sizeof(int16_t) > *data_size)
1179                         goto fail;
1180                 /* single frame decode */
1181                 ret = -E_WMA_DECODE;
1182                 if (wma_decode_frame(pwd, samples) < 0)
1183                         goto fail;
1184                 frame_count++;
1185                 samples += pwd->ahi.channels * pwd->frame_len;
1186         }
1187         PARA_DEBUG_LOG("frame_count: %d frame_len: %d, block_len: %d, "
1188                 "outbytes: %zd, eaten: %d\n",
1189                 frame_count, pwd->frame_len, pwd->block_len,
1190                 (int8_t *) samples - (int8_t *) data, pwd->ahi.block_align);
1191         *data_size = (int8_t *)samples - (int8_t *)data;
1192         return pwd->ahi.block_align;
1193 fail:
1194         /* reset the bit reservoir on errors */
1195         pwd->last_superframe_len = 0;
1196         return ret;
1197 }
1198
1199 static ssize_t wmadec_convert(char *inbuffer, size_t len,
1200                 struct filter_node *fn)
1201 {
1202         int ret, out_size = fn->bufsize - fn->loaded;
1203         struct private_wmadec_data *pwd = fn->private_data;
1204
1205         if (out_size < 128 * 1024)
1206                 return 0;
1207         if (len <= WMA_FRAME_SKIP)
1208                 return 0;
1209         if (!pwd) {
1210                 ret = wma_decode_init(inbuffer, len, &pwd);
1211                 if (ret <= 0)
1212                         return ret;
1213                 fn->private_data = pwd;
1214                 fn->fc->channels = pwd->ahi.channels;
1215                 fn->fc->samplerate = pwd->ahi.sample_rate;
1216                 return pwd->ahi.header_len;
1217         }
1218         /* skip 31 bytes */
1219         if (len <= WMA_FRAME_SKIP + pwd->ahi.block_align)
1220                 return 0;
1221         ret = wma_decode_superframe(pwd, fn->buf + fn->loaded,
1222                 &out_size, (uint8_t *)inbuffer + WMA_FRAME_SKIP,
1223                 len - WMA_FRAME_SKIP);
1224         if (ret < 0)
1225                 return ret;
1226         fn->loaded += out_size;
1227         return ret + WMA_FRAME_SKIP;
1228 }
1229
1230 static void wmadec_close(struct filter_node *fn)
1231 {
1232         struct private_wmadec_data *pwd = fn->private_data;
1233
1234         if (!pwd)
1235                 return;
1236         wmadec_cleanup(pwd);
1237         free(fn->buf);
1238         fn->buf = NULL;
1239         free(fn->private_data);
1240         fn->private_data = NULL;
1241 }
1242
1243 static void wmadec_open(struct filter_node *fn)
1244 {
1245         fn->bufsize = 1024 * 1024;
1246         fn->buf = para_malloc(fn->bufsize);
1247         fn->private_data = NULL;
1248         fn->loaded = 0;
1249 }
1250
1251 /**
1252  * The init function of the wma decoder.
1253  *
1254  * \param f Its fields are filled in by the function.
1255  */
1256 void wmadec_filter_init(struct filter *f)
1257 {
1258         f->open = wmadec_open;
1259         f->close = wmadec_close;
1260         f->convert = wmadec_convert;
1261 }