2 * WMA compatible decoder
4 * Extracted 2009 from the mplayer source code 2009-02-10.
6 * Copyright (c) 2002 The FFmpeg Project
8 * Licensed under the GNU Lesser General Public License.
9 * For licencing details see COPYING.LIB.
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
15 * This decoder handles Microsoft Windows Media Audio data version 2.
18 #define _XOPEN_SOURCE 600
35 #include "bitstream.h"
42 #define BLOCK_MIN_BITS 7
43 #define BLOCK_MAX_BITS 11
44 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
46 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
48 /* XXX: find exact max size */
49 #define HIGH_BAND_MAX_SIZE 16
51 /* XXX: is it a suitable value ? */
52 #define MAX_CODED_SUPERFRAME_SIZE 16384
54 #define MAX_CHANNELS 2
56 #define NOISE_TAB_SIZE 8192
58 #define LSP_POW_BITS 7
60 struct private_wmadec_data
{
61 struct asf_header_info ahi
;
62 struct getbit_context gb
;
63 int use_bit_reservoir
;
64 int use_variable_block_len
;
65 int use_exp_vlc
; ///< exponent coding: 0 = lsp, 1 = vlc + delta
66 int use_noise_coding
; ///< true if perceptual noise is added
69 int exponent_sizes
[BLOCK_NB_SIZES
];
70 uint16_t exponent_bands
[BLOCK_NB_SIZES
][25];
71 int high_band_start
[BLOCK_NB_SIZES
]; ///< index of first coef in high band
72 int coefs_start
; ///< first coded coef
73 int coefs_end
[BLOCK_NB_SIZES
]; ///< max number of coded coefficients
74 int exponent_high_sizes
[BLOCK_NB_SIZES
];
75 int exponent_high_bands
[BLOCK_NB_SIZES
][HIGH_BAND_MAX_SIZE
];
78 /* coded values in high bands */
79 int high_band_coded
[MAX_CHANNELS
][HIGH_BAND_MAX_SIZE
];
80 int high_band_values
[MAX_CHANNELS
][HIGH_BAND_MAX_SIZE
];
82 /* there are two possible tables for spectral coefficients */
83 struct vlc coef_vlc
[2];
84 uint16_t *run_table
[2];
85 uint16_t *level_table
[2];
86 uint16_t *int_table
[2];
87 const struct coef_vlc_table
*coef_vlcs
[2];
89 int frame_len
; ///< frame length in samples
90 int frame_len_bits
; ///< frame_len = 1 << frame_len_bits
91 int nb_block_sizes
; ///< number of block sizes
93 int reset_block_lengths
;
94 int block_len_bits
; ///< log2 of current block length
95 int next_block_len_bits
; ///< log2 of next block length
96 int prev_block_len_bits
; ///< log2 of prev block length
97 int block_len
; ///< block length in samples
98 int block_pos
; ///< current position in frame
99 uint8_t ms_stereo
; ///< true if mid/side stereo mode
100 uint8_t channel_coded
[MAX_CHANNELS
]; ///< true if channel is coded
101 int exponents_bsize
[MAX_CHANNELS
]; ///< log2 ratio frame/exp. length
102 float exponents
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
103 float max_exponent
[MAX_CHANNELS
];
104 int16_t coefs1
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
105 float coefs
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
106 float output
[BLOCK_MAX_SIZE
* 2];
107 struct mdct_context
*mdct_ctx
[BLOCK_NB_SIZES
];
108 float *windows
[BLOCK_NB_SIZES
];
109 /* output buffer for one frame and the last for IMDCT windowing */
110 float frame_out
[MAX_CHANNELS
][BLOCK_MAX_SIZE
* 2];
111 /* last frame info */
112 uint8_t last_superframe
[MAX_CODED_SUPERFRAME_SIZE
+ 4]; /* padding added */
114 int last_superframe_len
;
115 float noise_table
[NOISE_TAB_SIZE
];
117 float noise_mult
; /* XXX: suppress that and integrate it in the noise array */
118 /* lsp_to_curve tables */
119 float lsp_cos_table
[BLOCK_MAX_SIZE
];
120 float lsp_pow_e_table
[256];
121 float lsp_pow_m_table1
[(1 << LSP_POW_BITS
)];
122 float lsp_pow_m_table2
[(1 << LSP_POW_BITS
)];
126 #define EXPMAX ((19 + EXPVLCBITS - 1) / EXPVLCBITS)
128 #define HGAINVLCBITS 9
129 #define HGAINMAX ((13 + HGAINVLCBITS - 1) / HGAINVLCBITS)
132 #define VLCMAX ((22 + VLCBITS - 1) / VLCBITS)
134 DECLARE_ALIGNED(16, float, ff_sine_128
[128]);
135 DECLARE_ALIGNED(16, float, ff_sine_256
[256]);
136 DECLARE_ALIGNED(16, float, ff_sine_512
[512]);
137 DECLARE_ALIGNED(16, float, ff_sine_1024
[1024]);
138 DECLARE_ALIGNED(16, float, ff_sine_2048
[2048]);
139 DECLARE_ALIGNED(16, float, ff_sine_4096
[4096]);
141 static float *ff_sine_windows
[6] = {
142 ff_sine_128
, ff_sine_256
, ff_sine_512
, ff_sine_1024
,
143 ff_sine_2048
, ff_sine_4096
146 /* Generate a sine window. */
147 static void sine_window_init(float *window
, int n
)
151 for (i
= 0; i
< n
; i
++)
152 window
[i
] = sinf((i
+ 0.5) * (M_PI
/ (2.0 * n
)));
155 static int wmadec_cleanup(struct private_wmadec_data
*s
)
159 for (i
= 0; i
< s
->nb_block_sizes
; i
++)
160 imdct_end(s
->mdct_ctx
[i
]);
162 free_vlc(&s
->exp_vlc
);
163 if (s
->use_noise_coding
)
164 free_vlc(&s
->hgain_vlc
);
165 for (i
= 0; i
< 2; i
++) {
166 free_vlc(&s
->coef_vlc
[i
]);
167 free(s
->run_table
[i
]);
168 free(s
->level_table
[i
]);
169 free(s
->int_table
[i
]);
174 /* XXX: use same run/length optimization as mpeg decoders */
175 //FIXME maybe split decode / encode or pass flag
176 static void init_coef_vlc(struct vlc
*vlc
, uint16_t **prun_table
,
177 uint16_t **plevel_table
, uint16_t **pint_table
,
178 const struct coef_vlc_table
*vlc_table
)
180 int n
= vlc_table
->n
;
181 const uint8_t *table_bits
= vlc_table
->huffbits
;
182 const uint32_t *table_codes
= vlc_table
->huffcodes
;
183 const uint16_t *levels_table
= vlc_table
->levels
;
184 uint16_t *run_table
, *level_table
, *int_table
;
185 int i
, l
, j
, k
, level
;
187 init_vlc(vlc
, VLCBITS
, n
, table_bits
, 1, 1, table_codes
, 4, 4);
189 run_table
= para_malloc(n
* sizeof(uint16_t));
190 level_table
= para_malloc(n
* sizeof(uint16_t));
191 int_table
= para_malloc(n
* sizeof(uint16_t));
197 l
= levels_table
[k
++];
198 for (j
= 0; j
< l
; j
++) {
200 level_table
[i
] = level
;
205 *prun_table
= run_table
;
206 *plevel_table
= level_table
;
207 *pint_table
= int_table
;
210 /* compute the scale factor band sizes for each MDCT block size */
211 static void compute_scale_factor_band_sizes(struct private_wmadec_data
*s
,
214 struct asf_header_info
*ahi
= &s
->ahi
;
215 int a
, b
, pos
, lpos
, k
, block_len
, i
, j
, n
;
216 const uint8_t *table
;
219 for (k
= 0; k
< s
->nb_block_sizes
; k
++) {
220 block_len
= s
->frame_len
>> k
;
223 a
= s
->frame_len_bits
- BLOCK_MIN_BITS
- k
;
225 if (ahi
->sample_rate
>= 44100)
226 table
= exponent_band_44100
[a
];
227 else if (ahi
->sample_rate
>= 32000)
228 table
= exponent_band_32000
[a
];
229 else if (ahi
->sample_rate
>= 22050)
230 table
= exponent_band_22050
[a
];
234 for (i
= 0; i
< n
; i
++)
235 s
->exponent_bands
[k
][i
] = table
[i
];
236 s
->exponent_sizes
[k
] = n
;
240 for (i
= 0; i
< 25; i
++) {
241 a
= wma_critical_freqs
[i
];
242 b
= ahi
->sample_rate
;
243 pos
= ((block_len
* 2 * a
) + (b
<< 1)) / (4 * b
);
248 s
->exponent_bands
[k
][j
++] = pos
- lpos
;
249 if (pos
>= block_len
)
253 s
->exponent_sizes
[k
] = j
;
256 /* max number of coefs */
257 s
->coefs_end
[k
] = (s
->frame_len
- ((s
->frame_len
* 9) / 100)) >> k
;
258 /* high freq computation */
259 s
->high_band_start
[k
] = (int) ((block_len
* 2 * high_freq
)
260 / ahi
->sample_rate
+ 0.5);
261 n
= s
->exponent_sizes
[k
];
264 for (i
= 0; i
< n
; i
++) {
267 pos
+= s
->exponent_bands
[k
][i
];
269 if (start
< s
->high_band_start
[k
])
270 start
= s
->high_band_start
[k
];
271 if (end
> s
->coefs_end
[k
])
272 end
= s
->coefs_end
[k
];
274 s
->exponent_high_bands
[k
][j
++] = end
- start
;
276 s
->exponent_high_sizes
[k
] = j
;
280 static int wma_init(struct private_wmadec_data
*s
, int flags2
, struct asf_header_info
*ahi
)
283 float bps1
, high_freq
;
288 if (ahi
->sample_rate
<= 0 || ahi
->sample_rate
> 50000
289 || ahi
->channels
<= 0 || ahi
->channels
> 8
290 || ahi
->bit_rate
<= 0)
291 return -E_WMA_BAD_PARAMS
;
293 /* compute MDCT block size */
294 if (ahi
->sample_rate
<= 16000) {
295 s
->frame_len_bits
= 9;
296 } else if (ahi
->sample_rate
<= 22050) {
297 s
->frame_len_bits
= 10;
299 s
->frame_len_bits
= 11;
301 s
->frame_len
= 1 << s
->frame_len_bits
;
302 if (s
->use_variable_block_len
) {
304 nb
= ((flags2
>> 3) & 3) + 1;
305 if ((ahi
->bit_rate
/ ahi
->channels
) >= 32000)
307 nb_max
= s
->frame_len_bits
- BLOCK_MIN_BITS
;
310 s
->nb_block_sizes
= nb
+ 1;
312 s
->nb_block_sizes
= 1;
314 /* init rate dependent parameters */
315 s
->use_noise_coding
= 1;
316 high_freq
= ahi
->sample_rate
* 0.5;
318 /* wma2 rates are normalized */
319 sample_rate1
= ahi
->sample_rate
;
320 if (sample_rate1
>= 44100)
321 sample_rate1
= 44100;
322 else if (sample_rate1
>= 22050)
323 sample_rate1
= 22050;
324 else if (sample_rate1
>= 16000)
325 sample_rate1
= 16000;
326 else if (sample_rate1
>= 11025)
327 sample_rate1
= 11025;
328 else if (sample_rate1
>= 8000)
331 bps
= (float) ahi
->bit_rate
/ (float) (ahi
->channels
* ahi
->sample_rate
);
332 s
->byte_offset_bits
= wma_log2((int) (bps
* s
->frame_len
/ 8.0 + 0.5)) + 2;
334 * Compute high frequency value and choose if noise coding should be
338 if (ahi
->channels
== 2)
340 if (sample_rate1
== 44100) {
342 s
->use_noise_coding
= 0;
344 high_freq
= high_freq
* 0.4;
345 } else if (sample_rate1
== 22050) {
347 s
->use_noise_coding
= 0;
348 else if (bps1
>= 0.72)
349 high_freq
= high_freq
* 0.7;
351 high_freq
= high_freq
* 0.6;
352 } else if (sample_rate1
== 16000) {
354 high_freq
= high_freq
* 0.5;
356 high_freq
= high_freq
* 0.3;
357 } else if (sample_rate1
== 11025) {
358 high_freq
= high_freq
* 0.7;
359 } else if (sample_rate1
== 8000) {
361 high_freq
= high_freq
* 0.5;
362 } else if (bps
> 0.75) {
363 s
->use_noise_coding
= 0;
365 high_freq
= high_freq
* 0.65;
369 high_freq
= high_freq
* 0.75;
370 } else if (bps
>= 0.6) {
371 high_freq
= high_freq
* 0.6;
373 high_freq
= high_freq
* 0.5;
376 PARA_INFO_LOG("channels=%d sample_rate=%d "
377 "bitrate=%d block_align=%d\n",
378 ahi
->channels
, ahi
->sample_rate
,
379 ahi
->bit_rate
, ahi
->block_align
);
380 PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
381 "high_freq=%f bitoffset=%d\n",
382 s
->frame_len
, bps
, bps1
,
383 high_freq
, s
->byte_offset_bits
);
384 PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
385 s
->use_noise_coding
, s
->use_exp_vlc
, s
->nb_block_sizes
);
387 compute_scale_factor_band_sizes(s
, high_freq
);
388 /* init MDCT windows : simple sinus window */
389 for (i
= 0; i
< s
->nb_block_sizes
; i
++) {
391 n
= 1 << (s
->frame_len_bits
- i
);
392 sine_window_init(ff_sine_windows
[s
->frame_len_bits
- i
- 7], n
);
393 s
->windows
[i
] = ff_sine_windows
[s
->frame_len_bits
- i
- 7];
396 s
->reset_block_lengths
= 1;
398 if (s
->use_noise_coding
) {
399 /* init the noise generator */
401 s
->noise_mult
= 0.02;
403 s
->noise_mult
= 0.04;
409 norm
= (1.0 / (float) (1LL << 31)) * sqrt(3) * s
->noise_mult
;
410 for (i
= 0; i
< NOISE_TAB_SIZE
; i
++) {
411 seed
= seed
* 314159 + 1;
412 s
->noise_table
[i
] = (float) ((int) seed
) * norm
;
417 /* choose the VLC tables for the coefficients */
419 if (ahi
->sample_rate
>= 32000) {
422 else if (bps1
< 1.16)
425 s
->coef_vlcs
[0] = &coef_vlcs
[coef_vlc_table
* 2];
426 s
->coef_vlcs
[1] = &coef_vlcs
[coef_vlc_table
* 2 + 1];
427 init_coef_vlc(&s
->coef_vlc
[0], &s
->run_table
[0], &s
->level_table
[0],
428 &s
->int_table
[0], s
->coef_vlcs
[0]);
429 init_coef_vlc(&s
->coef_vlc
[1], &s
->run_table
[1], &s
->level_table
[1],
430 &s
->int_table
[1], s
->coef_vlcs
[1]);
434 static void wma_lsp_to_curve_init(struct private_wmadec_data
*s
, int frame_len
)
439 wdel
= M_PI
/ frame_len
;
440 for (i
= 0; i
< frame_len
; i
++)
441 s
->lsp_cos_table
[i
] = 2.0f
* cos(wdel
* i
);
443 /* tables for x^-0.25 computation */
444 for (i
= 0; i
< 256; i
++) {
446 s
->lsp_pow_e_table
[i
] = pow(2.0, e
* -0.25);
449 /* These two tables are needed to avoid two operations in pow_m1_4. */
451 for (i
= (1 << LSP_POW_BITS
) - 1; i
>= 0; i
--) {
452 m
= (1 << LSP_POW_BITS
) + i
;
453 a
= (float) m
*(0.5 / (1 << LSP_POW_BITS
));
455 s
->lsp_pow_m_table1
[i
] = 2 * a
- b
;
456 s
->lsp_pow_m_table2
[i
] = b
- a
;
461 static int wma_decode_init(char *initial_buf
, int len
, struct private_wmadec_data
**result
)
463 struct private_wmadec_data
*s
;
466 PARA_NOTICE_LOG("initial buf: %d bytes\n", len
);
467 s
= para_calloc(sizeof(*s
));
468 ret
= read_asf_header(initial_buf
, len
, &s
->ahi
);
474 s
->use_exp_vlc
= s
->ahi
.flags2
& 0x0001;
475 s
->use_bit_reservoir
= s
->ahi
.flags2
& 0x0002;
476 s
->use_variable_block_len
= s
->ahi
.flags2
& 0x0004;
478 ret
= wma_init(s
, s
->ahi
.flags2
, &s
->ahi
);
482 for (i
= 0; i
< s
->nb_block_sizes
; i
++) {
483 ret
= imdct_init(s
->frame_len_bits
- i
+ 1, &s
->mdct_ctx
[i
]);
487 if (s
->use_noise_coding
) {
488 PARA_INFO_LOG("using noise coding\n");
489 init_vlc(&s
->hgain_vlc
, HGAINVLCBITS
,
490 sizeof(ff_wma_hgain_huffbits
), ff_wma_hgain_huffbits
,
491 1, 1, ff_wma_hgain_huffcodes
, 2, 2);
494 if (s
->use_exp_vlc
) {
495 PARA_INFO_LOG("using exp_vlc\n");
496 init_vlc(&s
->exp_vlc
, EXPVLCBITS
,
497 sizeof(ff_wma_scale_huffbits
), ff_wma_scale_huffbits
,
498 1, 1, ff_wma_scale_huffcodes
, 4, 4);
500 PARA_INFO_LOG("using curve\n");
501 wma_lsp_to_curve_init(s
, s
->frame_len
);
504 return s
->ahi
.header_len
;
508 * compute x^-0.25 with an exponent and mantissa table. We use linear
509 * interpolation to reduce the mantissa table size at a small speed
510 * expense (linear interpolation approximately doubles the number of
511 * bits of precision).
513 static inline float pow_m1_4(struct private_wmadec_data
*s
, float x
)
524 m
= (u
.v
>> (23 - LSP_POW_BITS
)) & ((1 << LSP_POW_BITS
) - 1);
525 /* build interpolation scale: 1 <= t < 2. */
526 t
.v
= ((u
.v
<< LSP_POW_BITS
) & ((1 << 23) - 1)) | (127 << 23);
527 a
= s
->lsp_pow_m_table1
[m
];
528 b
= s
->lsp_pow_m_table2
[m
];
529 return s
->lsp_pow_e_table
[e
] * (a
+ b
* t
.f
);
532 static void wma_lsp_to_curve(struct private_wmadec_data
*s
,
533 float *out
, float *val_max_ptr
, int n
, float *lsp
)
536 float p
, q
, w
, v
, val_max
;
539 for (i
= 0; i
< n
; i
++) {
542 w
= s
->lsp_cos_table
[i
];
543 for (j
= 1; j
< NB_LSP_COEFS
; j
+= 2) {
555 *val_max_ptr
= val_max
;
558 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
559 static void decode_exp_lsp(struct private_wmadec_data
*s
, int ch
)
561 float lsp_coefs
[NB_LSP_COEFS
];
564 for (i
= 0; i
< NB_LSP_COEFS
; i
++) {
565 if (i
== 0 || i
>= 8)
566 val
= get_bits(&s
->gb
, 3);
568 val
= get_bits(&s
->gb
, 4);
569 lsp_coefs
[i
] = ff_wma_lsp_codebook
[i
][val
];
572 wma_lsp_to_curve(s
, s
->exponents
[ch
], &s
->max_exponent
[ch
],
573 s
->block_len
, lsp_coefs
);
577 * Parse a vlc code, faster then get_vlc().
579 * \param bits The number of bits which will be read at once, must be
580 * identical to nb_bits in init_vlc()
582 * \param max_depth The number of times bits bits must be read to completely
583 * read the longest vlc code = (max_vlc_length + bits - 1) / bits.
585 static int get_vlc2(struct getbit_context
*s
, VLC_TYPE(*table
)[2],
586 int bits
, int max_depth
)
592 GET_VLC(code
, re
, s
, table
, bits
, max_depth
)
597 /* Decode exponents coded with VLC codes. */
598 static int decode_exp_vlc(struct private_wmadec_data
*s
, int ch
)
600 int last_exp
, n
, code
;
601 const uint16_t *ptr
, *band_ptr
;
602 float v
, *q
, max_scale
, *q_end
;
604 band_ptr
= s
->exponent_bands
[s
->frame_len_bits
- s
->block_len_bits
];
606 q
= s
->exponents
[ch
];
607 q_end
= q
+ s
->block_len
;
612 code
= get_vlc2(&s
->gb
, s
->exp_vlc
.table
, EXPVLCBITS
, EXPMAX
);
615 /* NOTE: this offset is the same as MPEG4 AAC ! */
616 last_exp
+= code
- 60;
617 /* XXX: use a table */
618 v
= pow(10, last_exp
* (1.0 / 16.0));
626 s
->max_exponent
[ch
] = max_scale
;
630 /* compute src0 * src1 + src2 */
631 static inline void vector_mult_add(float *dst
, const float *src0
, const float *src1
,
632 const float *src2
, int len
)
636 for (i
= 0; i
< len
; i
++)
637 dst
[i
] = src0
[i
] * src1
[i
] + src2
[i
];
640 static inline void vector_mult_reverse(float *dst
, const float *src0
,
641 const float *src1
, int len
)
646 for (i
= 0; i
< len
; i
++)
647 dst
[i
] = src0
[i
] * src1
[-i
];
651 * Apply MDCT window and add into output.
653 * We ensure that when the windows overlap their squared sum
654 * is always 1 (MDCT reconstruction rule).
656 static void wma_window(struct private_wmadec_data
*s
, float *out
)
658 float *in
= s
->output
;
659 int block_len
, bsize
, n
;
662 if (s
->block_len_bits
<= s
->prev_block_len_bits
) {
663 block_len
= s
->block_len
;
664 bsize
= s
->frame_len_bits
- s
->block_len_bits
;
665 vector_mult_add(out
, in
, s
->windows
[bsize
], out
, block_len
);
667 block_len
= 1 << s
->prev_block_len_bits
;
668 n
= (s
->block_len
- block_len
) / 2;
669 bsize
= s
->frame_len_bits
- s
->prev_block_len_bits
;
670 vector_mult_add(out
+ n
, in
+ n
, s
->windows
[bsize
], out
+ n
,
672 memcpy(out
+ n
+ block_len
, in
+ n
+ block_len
,
678 if (s
->block_len_bits
<= s
->next_block_len_bits
) {
679 block_len
= s
->block_len
;
680 bsize
= s
->frame_len_bits
- s
->block_len_bits
;
681 vector_mult_reverse(out
, in
, s
->windows
[bsize
], block_len
);
683 block_len
= 1 << s
->next_block_len_bits
;
684 n
= (s
->block_len
- block_len
) / 2;
685 bsize
= s
->frame_len_bits
- s
->next_block_len_bits
;
686 memcpy(out
, in
, n
* sizeof(float));
687 vector_mult_reverse(out
+ n
, in
+ n
, s
->windows
[bsize
],
689 memset(out
+ n
+ block_len
, 0, n
* sizeof(float));
693 static int wma_total_gain_to_bits(int total_gain
)
697 else if (total_gain
< 32)
699 else if (total_gain
< 40)
701 else if (total_gain
< 45)
708 * @return 0 if OK. 1 if last block of frame. return -1 if
709 * unrecorrable error.
711 static int wma_decode_block(struct private_wmadec_data
*s
)
713 int n
, v
, ch
, code
, bsize
;
714 int coef_nb_bits
, total_gain
;
715 int nb_coefs
[MAX_CHANNELS
];
718 /* compute current block length */
719 if (s
->use_variable_block_len
) {
720 n
= wma_log2(s
->nb_block_sizes
- 1) + 1;
722 if (s
->reset_block_lengths
) {
723 s
->reset_block_lengths
= 0;
724 v
= get_bits(&s
->gb
, n
);
725 if (v
>= s
->nb_block_sizes
)
727 s
->prev_block_len_bits
= s
->frame_len_bits
- v
;
728 v
= get_bits(&s
->gb
, n
);
729 if (v
>= s
->nb_block_sizes
)
731 s
->block_len_bits
= s
->frame_len_bits
- v
;
733 /* update block lengths */
734 s
->prev_block_len_bits
= s
->block_len_bits
;
735 s
->block_len_bits
= s
->next_block_len_bits
;
737 v
= get_bits(&s
->gb
, n
);
738 if (v
>= s
->nb_block_sizes
)
740 s
->next_block_len_bits
= s
->frame_len_bits
- v
;
742 /* fixed block len */
743 s
->next_block_len_bits
= s
->frame_len_bits
;
744 s
->prev_block_len_bits
= s
->frame_len_bits
;
745 s
->block_len_bits
= s
->frame_len_bits
;
748 /* now check if the block length is coherent with the frame length */
749 s
->block_len
= 1 << s
->block_len_bits
;
750 if ((s
->block_pos
+ s
->block_len
) > s
->frame_len
)
751 return -E_INCOHERENT_BLOCK_LEN
;
753 if (s
->ahi
.channels
== 2)
754 s
->ms_stereo
= get_bits1(&s
->gb
);
756 for (ch
= 0; ch
< s
->ahi
.channels
; ch
++) {
757 int a
= get_bits1(&s
->gb
);
758 s
->channel_coded
[ch
] = a
;
762 bsize
= s
->frame_len_bits
- s
->block_len_bits
;
764 /* if no channel coded, no need to go further */
765 /* XXX: fix potential framing problems */
769 /* read total gain and extract corresponding number of bits for
770 coef escape coding */
773 int a
= get_bits(&s
->gb
, 7);
779 coef_nb_bits
= wma_total_gain_to_bits(total_gain
);
781 /* compute number of coefficients */
782 n
= s
->coefs_end
[bsize
] - s
->coefs_start
;
783 for (ch
= 0; ch
< s
->ahi
.channels
; ch
++)
787 if (s
->use_noise_coding
) {
788 for (ch
= 0; ch
< s
->ahi
.channels
; ch
++) {
789 if (s
->channel_coded
[ch
]) {
791 m
= s
->exponent_high_sizes
[bsize
];
792 for (i
= 0; i
< m
; i
++) {
793 a
= get_bits1(&s
->gb
);
794 s
->high_band_coded
[ch
][i
] = a
;
795 /* if noise coding, the coefficients are not transmitted */
799 exponent_high_bands
[bsize
]
804 for (ch
= 0; ch
< s
->ahi
.channels
; ch
++) {
805 if (s
->channel_coded
[ch
]) {
808 n
= s
->exponent_high_sizes
[bsize
];
809 val
= (int) 0x80000000;
810 for (i
= 0; i
< n
; i
++) {
811 if (s
->high_band_coded
[ch
][i
]) {
812 if (val
== (int) 0x80000000) {
828 s
->high_band_values
[ch
][i
] =
836 /* exponents can be reused in short blocks. */
837 if ((s
->block_len_bits
== s
->frame_len_bits
) || get_bits1(&s
->gb
)) {
838 for (ch
= 0; ch
< s
->ahi
.channels
; ch
++) {
839 if (s
->channel_coded
[ch
]) {
840 if (s
->use_exp_vlc
) {
841 if (decode_exp_vlc(s
, ch
) < 0)
844 decode_exp_lsp(s
, ch
);
846 s
->exponents_bsize
[ch
] = bsize
;
851 /* parse spectral coefficients : just RLE encoding */
852 for (ch
= 0; ch
< s
->ahi
.channels
; ch
++) {
853 if (s
->channel_coded
[ch
]) {
854 struct vlc
*coef_vlc
;
855 int level
, run
, sign
, tindex
;
857 const uint16_t *level_table
, *run_table
;
859 /* special VLC tables are used for ms stereo because
860 there is potentially less energy there */
861 tindex
= (ch
== 1 && s
->ms_stereo
);
862 coef_vlc
= &s
->coef_vlc
[tindex
];
863 run_table
= s
->run_table
[tindex
];
864 level_table
= s
->level_table
[tindex
];
866 ptr
= &s
->coefs1
[ch
][0];
867 eptr
= ptr
+ nb_coefs
[ch
];
868 memset(ptr
, 0, s
->block_len
* sizeof(int16_t));
871 get_vlc2(&s
->gb
, coef_vlc
->table
, VLCBITS
,
878 } else if (code
== 0) {
880 level
= get_bits(&s
->gb
, coef_nb_bits
);
881 /* NOTE: this is rather suboptimal. reading
882 block_len_bits would be better */
884 get_bits(&s
->gb
, s
->frame_len_bits
);
887 run
= run_table
[code
];
888 level
= level_table
[code
];
890 sign
= get_bits1(&s
->gb
);
895 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
899 /* NOTE: EOB can be omitted */
908 int n4
= s
->block_len
/ 2;
909 mdct_norm
= 1.0 / (float) n4
;
912 /* finally compute the MDCT coefficients */
913 for (ch
= 0; ch
< s
->ahi
.channels
; ch
++) {
914 if (s
->channel_coded
[ch
]) {
916 float *coefs
, *exponents
, mult
, mult1
, noise
;
917 int i
, j
, n1
, last_high_band
, esize
;
918 float exp_power
[HIGH_BAND_MAX_SIZE
];
920 coefs1
= s
->coefs1
[ch
];
921 exponents
= s
->exponents
[ch
];
922 esize
= s
->exponents_bsize
[ch
];
923 mult
= pow(10, total_gain
* 0.05) / s
->max_exponent
[ch
];
925 coefs
= s
->coefs
[ch
];
926 if (s
->use_noise_coding
) {
928 /* very low freqs : noise */
929 for (i
= 0; i
< s
->coefs_start
; i
++) {
931 s
->noise_table
[s
->noise_index
] *
932 exponents
[i
<< bsize
>> esize
] *
936 1) & (NOISE_TAB_SIZE
- 1);
939 n1
= s
->exponent_high_sizes
[bsize
];
941 /* compute power of high bands */
942 exponents
= s
->exponents
[ch
] +
943 (s
->high_band_start
[bsize
] << bsize
);
944 last_high_band
= 0; /* avoid warning */
945 for (j
= 0; j
< n1
; j
++) {
946 n
= s
->exponent_high_bands
[s
->
952 if (s
->high_band_coded
[ch
][j
]) {
955 for (i
= 0; i
< n
; i
++) {
956 val
= exponents
[i
<< bsize
960 exp_power
[j
] = e2
/ n
;
963 exponents
+= n
<< bsize
;
966 /* main freqs and high freqs */
969 (s
->coefs_start
<< bsize
);
970 for (j
= -1; j
< n1
; j
++) {
972 n
= s
->high_band_start
[bsize
] -
975 n
= s
->exponent_high_bands
[s
->
982 if (j
>= 0 && s
->high_band_coded
[ch
][j
]) {
983 /* use noise with specified power */
988 /* XXX: use a table */
996 (s
->max_exponent
[ch
] *
999 for (i
= 0; i
< n
; i
++) {
1010 exponents
[i
<< bsize
1014 exponents
+= n
<< bsize
;
1016 /* coded values + small noise */
1017 for (i
= 0; i
< n
; i
++) {
1029 exponents
[i
<< bsize
1033 exponents
+= n
<< bsize
;
1037 /* very high freqs : noise */
1038 n
= s
->block_len
- s
->coefs_end
[bsize
];
1040 mult
* exponents
[((-1 << bsize
)) >> esize
];
1041 for (i
= 0; i
< n
; i
++) {
1043 s
->noise_table
[s
->noise_index
] *
1047 1) & (NOISE_TAB_SIZE
- 1);
1050 /* XXX: optimize more */
1051 for (i
= 0; i
< s
->coefs_start
; i
++)
1054 for (i
= 0; i
< n
; i
++) {
1057 exponents
[i
<< bsize
>> esize
] *
1060 n
= s
->block_len
- s
->coefs_end
[bsize
];
1061 for (i
= 0; i
< n
; i
++)
1067 if (s
->ms_stereo
&& s
->channel_coded
[1]) {
1072 * Nominal case for ms stereo: we do it before mdct.
1074 * No need to optimize this case because it should almost never
1077 if (!s
->channel_coded
[0]) {
1078 PARA_NOTICE_LOG("rare ms-stereo\n");
1079 memset(s
->coefs
[0], 0, sizeof(float) * s
->block_len
);
1080 s
->channel_coded
[0] = 1;
1082 for (i
= 0; i
< s
->block_len
; i
++) {
1085 s
->coefs
[0][i
] = a
+ b
;
1086 s
->coefs
[1][i
] = a
- b
;
1091 for (ch
= 0; ch
< s
->ahi
.channels
; ch
++) {
1095 n4
= s
->block_len
/ 2;
1096 if (s
->channel_coded
[ch
])
1097 imdct(s
->mdct_ctx
[bsize
], s
->output
, s
->coefs
[ch
]);
1098 else if (!(s
->ms_stereo
&& ch
== 1))
1099 memset(s
->output
, 0, sizeof(s
->output
));
1101 /* multiply by the window and add in the frame */
1102 index
= (s
->frame_len
/ 2) + s
->block_pos
- n4
;
1103 wma_window(s
, &s
->frame_out
[ch
][index
]);
1106 /* update block number */
1107 s
->block_pos
+= s
->block_len
;
1108 if (s
->block_pos
>= s
->frame_len
)
1115 * Clip a signed integer value into the -32768,32767 range.
1117 * \param a The value to clip.
1119 * \return The clipped value.
1121 static inline int16_t av_clip_int16(int a
)
1123 if ((a
+ 32768) & ~65535)
1124 return (a
>> 31) ^ 32767;
1129 /* Decode a frame of frame_len samples. */
1130 static int wma_decode_frame(struct private_wmadec_data
*s
, int16_t *samples
)
1132 int ret
, i
, n
, ch
, incr
;
1136 /* read each block */
1139 ret
= wma_decode_block(s
);
1146 /* convert frame to integer */
1148 incr
= s
->ahi
.channels
;
1149 for (ch
= 0; ch
< s
->ahi
.channels
; ch
++) {
1151 iptr
= s
->frame_out
[ch
];
1153 for (i
= 0; i
< n
; i
++) {
1154 *ptr
= av_clip_int16(lrintf(*iptr
++));
1157 /* prepare for next block */
1158 memmove(&s
->frame_out
[ch
][0], &s
->frame_out
[ch
][s
->frame_len
],
1159 s
->frame_len
* sizeof(float));
1164 static int wma_decode_superframe(struct private_wmadec_data
*s
, void *data
,
1165 int *data_size
, const uint8_t *buf
, int buf_size
)
1167 int ret
, nb_frames
, bit_offset
, i
, pos
, len
;
1170 static int frame_count
;
1172 if (buf_size
== 0) {
1173 s
->last_superframe_len
= 0;
1176 if (buf_size
< s
->ahi
.block_align
)
1178 buf_size
= s
->ahi
.block_align
;
1180 init_get_bits(&s
->gb
, buf
, buf_size
* 8);
1181 if (s
->use_bit_reservoir
) {
1182 /* read super frame header */
1183 skip_bits(&s
->gb
, 4); /* super frame index */
1184 nb_frames
= get_bits(&s
->gb
, 4) - 1;
1185 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1186 ret
= -E_WMA_OUTPUT_SPACE
;
1187 if ((nb_frames
+ 1) * s
->ahi
.channels
* s
->frame_len
1188 * sizeof(int16_t) > *data_size
)
1191 bit_offset
= get_bits(&s
->gb
, s
->byte_offset_bits
+ 3);
1193 if (s
->last_superframe_len
> 0) {
1194 /* add bit_offset bits to last frame */
1195 ret
= -E_WMA_BAD_SUPERFRAME
;
1196 if ((s
->last_superframe_len
+ ((bit_offset
+ 7) >> 3)) >
1197 MAX_CODED_SUPERFRAME_SIZE
)
1199 q
= s
->last_superframe
+ s
->last_superframe_len
;
1202 *q
++ = get_bits(&s
->gb
, 8);
1206 *q
++ = get_bits(&s
->gb
, len
) << (8 - len
);
1208 /* XXX: bit_offset bits into last frame */
1209 init_get_bits(&s
->gb
, s
->last_superframe
,
1210 MAX_CODED_SUPERFRAME_SIZE
* 8);
1211 /* skip unused bits */
1212 if (s
->last_bitoffset
> 0)
1213 skip_bits(&s
->gb
, s
->last_bitoffset
);
1215 * This frame is stored in the last superframe and in
1218 ret
= -E_WMA_DECODE
;
1219 if (wma_decode_frame(s
, samples
) < 0)
1222 samples
+= s
->ahi
.channels
* s
->frame_len
;
1225 /* read each frame starting from bit_offset */
1226 pos
= bit_offset
+ 4 + 4 + s
->byte_offset_bits
+ 3;
1227 init_get_bits(&s
->gb
, buf
+ (pos
>> 3),
1228 (MAX_CODED_SUPERFRAME_SIZE
- (pos
>> 3)) * 8);
1231 skip_bits(&s
->gb
, len
);
1233 s
->reset_block_lengths
= 1;
1234 for (i
= 0; i
< nb_frames
; i
++) {
1235 ret
= -E_WMA_DECODE
;
1236 if (wma_decode_frame(s
, samples
) < 0)
1239 samples
+= s
->ahi
.channels
* s
->frame_len
;
1242 /* we copy the end of the frame in the last frame buffer */
1243 pos
= get_bits_count(&s
->gb
) +
1244 ((bit_offset
+ 4 + 4 + s
->byte_offset_bits
+ 3) & ~7);
1245 s
->last_bitoffset
= pos
& 7;
1247 len
= buf_size
- pos
;
1248 ret
= -E_WMA_BAD_SUPERFRAME
;
1249 if (len
> MAX_CODED_SUPERFRAME_SIZE
|| len
< 0)
1251 s
->last_superframe_len
= len
;
1252 memcpy(s
->last_superframe
, buf
+ pos
, len
);
1254 PARA_DEBUG_LOG("not using bit reservoir\n");
1255 ret
= -E_WMA_OUTPUT_SPACE
;
1256 if (s
->ahi
.channels
* s
->frame_len
* sizeof(int16_t) > *data_size
)
1258 /* single frame decode */
1259 ret
= -E_WMA_DECODE
;
1260 if (wma_decode_frame(s
, samples
) < 0)
1263 samples
+= s
->ahi
.channels
* s
->frame_len
;
1265 PARA_DEBUG_LOG("frame_count: %d frame_len: %d, block_len: %d, "
1266 "outbytes: %d, eaten: %d\n",
1267 frame_count
, s
->frame_len
, s
->block_len
,
1268 (int8_t *) samples
- (int8_t *) data
, s
->ahi
.block_align
);
1269 *data_size
= (int8_t *)samples
- (int8_t *)data
;
1270 return s
->ahi
.block_align
;
1272 /* reset the bit reservoir on errors */
1273 s
->last_superframe_len
= 0;
1277 static ssize_t
wmadec_convert(char *inbuffer
, size_t len
,
1278 struct filter_node
*fn
)
1280 int ret
, out_size
= fn
->bufsize
- fn
->loaded
;
1281 struct private_wmadec_data
*pwd
= fn
->private_data
;
1283 if (out_size
< 128 * 1024)
1286 ret
= wma_decode_init(inbuffer
, len
, &pwd
);
1289 fn
->private_data
= pwd
;
1290 fn
->fc
->channels
= pwd
->ahi
.channels
;
1291 fn
->fc
->samplerate
= pwd
->ahi
.sample_rate
;
1292 return pwd
->ahi
.header_len
;
1295 if (len
<= WMA_FRAME_SKIP
+ pwd
->ahi
.block_align
)
1297 ret
= wma_decode_superframe(pwd
, fn
->buf
+ fn
->loaded
,
1298 &out_size
, (uint8_t *)inbuffer
+ WMA_FRAME_SKIP
,
1299 len
- WMA_FRAME_SKIP
);
1302 fn
->loaded
+= out_size
;
1303 return ret
+ WMA_FRAME_SKIP
;
1306 static void wmadec_close(struct filter_node
*fn
)
1308 struct private_wmadec_data
*pwd
= fn
->private_data
;
1312 wmadec_cleanup(pwd
);
1315 free(fn
->private_data
);
1316 fn
->private_data
= NULL
;
1319 static void wmadec_open(struct filter_node
*fn
)
1321 fn
->bufsize
= 1024 * 1024;
1322 fn
->buf
= para_malloc(fn
->bufsize
);
1323 fn
->private_data
= NULL
;
1328 * The init function of the wma decoder.
1330 * \param f Its fields are filled in by the function.
1332 void wmadec_filter_init(struct filter
*f
)
1334 f
->open
= wmadec_open
;
1335 f
->close
= wmadec_close
;
1336 f
->convert
= wmadec_convert
;