2 * WMA compatible decoder
4 * Extracted 2009 from the mplayer source code 2009-02-10.
6 * Copyright (c) 2002 The FFmpeg Project
8 * Licensed under the GNU Lesser General Public License.
9 * For licencing details see COPYING.LIB.
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
15 * This decoder handles Microsoft Windows Media Audio data version 2.
18 #define _XOPEN_SOURCE 600
35 #include "bitstream.h"
42 #define BLOCK_MIN_BITS 7
43 #define BLOCK_MAX_BITS 11
44 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
46 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
48 /* XXX: find exact max size */
49 #define HIGH_BAND_MAX_SIZE 16
51 /* XXX: is it a suitable value ? */
52 #define MAX_CODED_SUPERFRAME_SIZE 16384
54 #define MAX_CHANNELS 2
56 #define NOISE_TAB_SIZE 8192
58 #define LSP_POW_BITS 7
60 struct private_wmadec_data
{
61 struct asf_header_info ahi
;
62 struct getbit_context gb
;
63 int use_bit_reservoir
;
64 int use_variable_block_len
;
65 int use_exp_vlc
; ///< exponent coding: 0 = lsp, 1 = vlc + delta
66 int use_noise_coding
; ///< true if perceptual noise is added
69 int exponent_sizes
[BLOCK_NB_SIZES
];
70 uint16_t exponent_bands
[BLOCK_NB_SIZES
][25];
71 int high_band_start
[BLOCK_NB_SIZES
]; ///< index of first coef in high band
72 int coefs_start
; ///< first coded coef
73 int coefs_end
[BLOCK_NB_SIZES
]; ///< max number of coded coefficients
74 int exponent_high_sizes
[BLOCK_NB_SIZES
];
75 int exponent_high_bands
[BLOCK_NB_SIZES
][HIGH_BAND_MAX_SIZE
];
78 /* coded values in high bands */
79 int high_band_coded
[MAX_CHANNELS
][HIGH_BAND_MAX_SIZE
];
80 int high_band_values
[MAX_CHANNELS
][HIGH_BAND_MAX_SIZE
];
82 /* there are two possible tables for spectral coefficients */
83 struct vlc coef_vlc
[2];
84 uint16_t *run_table
[2];
85 uint16_t *level_table
[2];
86 const struct coef_vlc_table
*coef_vlcs
[2];
88 int frame_len
; ///< frame length in samples
89 int frame_len_bits
; ///< frame_len = 1 << frame_len_bits
90 int nb_block_sizes
; ///< number of block sizes
92 int reset_block_lengths
;
93 int block_len_bits
; ///< log2 of current block length
94 int next_block_len_bits
; ///< log2 of next block length
95 int prev_block_len_bits
; ///< log2 of prev block length
96 int block_len
; ///< block length in samples
97 int block_pos
; ///< current position in frame
98 uint8_t ms_stereo
; ///< true if mid/side stereo mode
99 uint8_t channel_coded
[MAX_CHANNELS
]; ///< true if channel is coded
100 int exponents_bsize
[MAX_CHANNELS
]; ///< log2 ratio frame/exp. length
101 float exponents
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
102 float max_exponent
[MAX_CHANNELS
];
103 int16_t coefs1
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
104 float coefs
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
105 float output
[BLOCK_MAX_SIZE
* 2];
106 struct mdct_context
*mdct_ctx
[BLOCK_NB_SIZES
];
107 float *windows
[BLOCK_NB_SIZES
];
108 /* output buffer for one frame and the last for IMDCT windowing */
109 float frame_out
[MAX_CHANNELS
][BLOCK_MAX_SIZE
* 2];
110 /* last frame info */
111 uint8_t last_superframe
[MAX_CODED_SUPERFRAME_SIZE
+ 4]; /* padding added */
113 int last_superframe_len
;
114 float noise_table
[NOISE_TAB_SIZE
];
116 float noise_mult
; /* XXX: suppress that and integrate it in the noise array */
117 /* lsp_to_curve tables */
118 float lsp_cos_table
[BLOCK_MAX_SIZE
];
119 float lsp_pow_e_table
[256];
120 float lsp_pow_m_table1
[(1 << LSP_POW_BITS
)];
121 float lsp_pow_m_table2
[(1 << LSP_POW_BITS
)];
125 #define EXPMAX ((19 + EXPVLCBITS - 1) / EXPVLCBITS)
127 #define HGAINVLCBITS 9
128 #define HGAINMAX ((13 + HGAINVLCBITS - 1) / HGAINVLCBITS)
131 #define VLCMAX ((22 + VLCBITS - 1) / VLCBITS)
133 DECLARE_ALIGNED(16, float, ff_sine_128
[128]);
134 DECLARE_ALIGNED(16, float, ff_sine_256
[256]);
135 DECLARE_ALIGNED(16, float, ff_sine_512
[512]);
136 DECLARE_ALIGNED(16, float, ff_sine_1024
[1024]);
137 DECLARE_ALIGNED(16, float, ff_sine_2048
[2048]);
138 DECLARE_ALIGNED(16, float, ff_sine_4096
[4096]);
140 static float *ff_sine_windows
[6] = {
141 ff_sine_128
, ff_sine_256
, ff_sine_512
, ff_sine_1024
,
142 ff_sine_2048
, ff_sine_4096
145 /* Generate a sine window. */
146 static void sine_window_init(float *window
, int n
)
150 for (i
= 0; i
< n
; i
++)
151 window
[i
] = sinf((i
+ 0.5) * (M_PI
/ (2.0 * n
)));
154 static void wmadec_cleanup(struct private_wmadec_data
*pwd
)
158 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++)
159 imdct_end(pwd
->mdct_ctx
[i
]);
160 if (pwd
->use_exp_vlc
)
161 free_vlc(&pwd
->exp_vlc
);
162 if (pwd
->use_noise_coding
)
163 free_vlc(&pwd
->hgain_vlc
);
164 for (i
= 0; i
< 2; i
++) {
165 free_vlc(&pwd
->coef_vlc
[i
]);
166 free(pwd
->run_table
[i
]);
167 free(pwd
->level_table
[i
]);
171 static void init_coef_vlc(struct vlc
*vlc
, uint16_t **prun_table
,
172 uint16_t **plevel_table
, const struct coef_vlc_table
*vlc_table
)
174 int n
= vlc_table
->n
;
175 const uint8_t *table_bits
= vlc_table
->huffbits
;
176 const uint32_t *table_codes
= vlc_table
->huffcodes
;
177 const uint16_t *levels_table
= vlc_table
->levels
;
178 uint16_t *run_table
, *level_table
;
179 int i
, l
, j
, k
, level
;
181 init_vlc(vlc
, VLCBITS
, n
, table_bits
, table_codes
, 4);
183 run_table
= para_malloc(n
* sizeof(uint16_t));
184 level_table
= para_malloc(n
* sizeof(uint16_t));
189 l
= levels_table
[k
++];
190 for (j
= 0; j
< l
; j
++) {
192 level_table
[i
] = level
;
197 *prun_table
= run_table
;
198 *plevel_table
= level_table
;
201 /* compute the scale factor band sizes for each MDCT block size */
202 static void compute_scale_factor_band_sizes(struct private_wmadec_data
*pwd
,
205 struct asf_header_info
*ahi
= &pwd
->ahi
;
206 int a
, b
, pos
, lpos
, k
, block_len
, i
, j
, n
;
207 const uint8_t *table
;
209 pwd
->coefs_start
= 0;
210 for (k
= 0; k
< pwd
->nb_block_sizes
; k
++) {
211 block_len
= pwd
->frame_len
>> k
;
214 a
= pwd
->frame_len_bits
- BLOCK_MIN_BITS
- k
;
216 if (ahi
->sample_rate
>= 44100)
217 table
= exponent_band_44100
[a
];
218 else if (ahi
->sample_rate
>= 32000)
219 table
= exponent_band_32000
[a
];
220 else if (ahi
->sample_rate
>= 22050)
221 table
= exponent_band_22050
[a
];
225 for (i
= 0; i
< n
; i
++)
226 pwd
->exponent_bands
[k
][i
] = table
[i
];
227 pwd
->exponent_sizes
[k
] = n
;
231 for (i
= 0; i
< 25; i
++) {
232 a
= wma_critical_freqs
[i
];
233 b
= ahi
->sample_rate
;
234 pos
= ((block_len
* 2 * a
) + (b
<< 1)) / (4 * b
);
239 pwd
->exponent_bands
[k
][j
++] = pos
- lpos
;
240 if (pos
>= block_len
)
244 pwd
->exponent_sizes
[k
] = j
;
247 /* max number of coefs */
248 pwd
->coefs_end
[k
] = (pwd
->frame_len
- ((pwd
->frame_len
* 9) / 100)) >> k
;
249 /* high freq computation */
250 pwd
->high_band_start
[k
] = (int) ((block_len
* 2 * high_freq
)
251 / ahi
->sample_rate
+ 0.5);
252 n
= pwd
->exponent_sizes
[k
];
255 for (i
= 0; i
< n
; i
++) {
258 pos
+= pwd
->exponent_bands
[k
][i
];
260 if (start
< pwd
->high_band_start
[k
])
261 start
= pwd
->high_band_start
[k
];
262 if (end
> pwd
->coefs_end
[k
])
263 end
= pwd
->coefs_end
[k
];
265 pwd
->exponent_high_bands
[k
][j
++] = end
- start
;
267 pwd
->exponent_high_sizes
[k
] = j
;
271 static int wma_init(struct private_wmadec_data
*pwd
)
274 float bps1
, high_freq
;
278 struct asf_header_info
*ahi
= &pwd
->ahi
;
279 int flags2
= ahi
->flags2
;
281 if (ahi
->sample_rate
<= 0 || ahi
->sample_rate
> 50000
282 || ahi
->channels
<= 0 || ahi
->channels
> 8
283 || ahi
->bit_rate
<= 0)
284 return -E_WMA_BAD_PARAMS
;
286 /* compute MDCT block size */
287 if (ahi
->sample_rate
<= 16000) {
288 pwd
->frame_len_bits
= 9;
289 } else if (ahi
->sample_rate
<= 22050) {
290 pwd
->frame_len_bits
= 10;
292 pwd
->frame_len_bits
= 11;
294 pwd
->frame_len
= 1 << pwd
->frame_len_bits
;
295 if (pwd
->use_variable_block_len
) {
297 nb
= ((flags2
>> 3) & 3) + 1;
298 if ((ahi
->bit_rate
/ ahi
->channels
) >= 32000)
300 nb_max
= pwd
->frame_len_bits
- BLOCK_MIN_BITS
;
303 pwd
->nb_block_sizes
= nb
+ 1;
305 pwd
->nb_block_sizes
= 1;
307 /* init rate dependent parameters */
308 pwd
->use_noise_coding
= 1;
309 high_freq
= ahi
->sample_rate
* 0.5;
311 /* wma2 rates are normalized */
312 sample_rate1
= ahi
->sample_rate
;
313 if (sample_rate1
>= 44100)
314 sample_rate1
= 44100;
315 else if (sample_rate1
>= 22050)
316 sample_rate1
= 22050;
317 else if (sample_rate1
>= 16000)
318 sample_rate1
= 16000;
319 else if (sample_rate1
>= 11025)
320 sample_rate1
= 11025;
321 else if (sample_rate1
>= 8000)
324 bps
= (float) ahi
->bit_rate
/ (float) (ahi
->channels
* ahi
->sample_rate
);
325 pwd
->byte_offset_bits
= wma_log2((int) (bps
* pwd
->frame_len
/ 8.0 + 0.5)) + 2;
327 * Compute high frequency value and choose if noise coding should be
331 if (ahi
->channels
== 2)
333 if (sample_rate1
== 44100) {
335 pwd
->use_noise_coding
= 0;
337 high_freq
= high_freq
* 0.4;
338 } else if (sample_rate1
== 22050) {
340 pwd
->use_noise_coding
= 0;
341 else if (bps1
>= 0.72)
342 high_freq
= high_freq
* 0.7;
344 high_freq
= high_freq
* 0.6;
345 } else if (sample_rate1
== 16000) {
347 high_freq
= high_freq
* 0.5;
349 high_freq
= high_freq
* 0.3;
350 } else if (sample_rate1
== 11025) {
351 high_freq
= high_freq
* 0.7;
352 } else if (sample_rate1
== 8000) {
354 high_freq
= high_freq
* 0.5;
355 } else if (bps
> 0.75) {
356 pwd
->use_noise_coding
= 0;
358 high_freq
= high_freq
* 0.65;
362 high_freq
= high_freq
* 0.75;
363 } else if (bps
>= 0.6) {
364 high_freq
= high_freq
* 0.6;
366 high_freq
= high_freq
* 0.5;
369 PARA_INFO_LOG("channels=%d sample_rate=%d "
370 "bitrate=%d block_align=%d\n",
371 ahi
->channels
, ahi
->sample_rate
,
372 ahi
->bit_rate
, ahi
->block_align
);
373 PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
374 "high_freq=%f bitoffset=%d\n",
375 pwd
->frame_len
, bps
, bps1
,
376 high_freq
, pwd
->byte_offset_bits
);
377 PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
378 pwd
->use_noise_coding
, pwd
->use_exp_vlc
, pwd
->nb_block_sizes
);
380 compute_scale_factor_band_sizes(pwd
, high_freq
);
381 /* init MDCT windows : simple sinus window */
382 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++) {
384 n
= 1 << (pwd
->frame_len_bits
- i
);
385 sine_window_init(ff_sine_windows
[pwd
->frame_len_bits
- i
- 7], n
);
386 pwd
->windows
[i
] = ff_sine_windows
[pwd
->frame_len_bits
- i
- 7];
389 pwd
->reset_block_lengths
= 1;
391 if (pwd
->use_noise_coding
) {
392 /* init the noise generator */
393 if (pwd
->use_exp_vlc
)
394 pwd
->noise_mult
= 0.02;
396 pwd
->noise_mult
= 0.04;
402 norm
= (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd
->noise_mult
;
403 for (i
= 0; i
< NOISE_TAB_SIZE
; i
++) {
404 seed
= seed
* 314159 + 1;
405 pwd
->noise_table
[i
] = (float) ((int) seed
) * norm
;
410 /* choose the VLC tables for the coefficients */
412 if (ahi
->sample_rate
>= 32000) {
415 else if (bps1
< 1.16)
418 pwd
->coef_vlcs
[0] = &coef_vlcs
[coef_vlc_table
* 2];
419 pwd
->coef_vlcs
[1] = &coef_vlcs
[coef_vlc_table
* 2 + 1];
420 init_coef_vlc(&pwd
->coef_vlc
[0], &pwd
->run_table
[0], &pwd
->level_table
[0],
422 init_coef_vlc(&pwd
->coef_vlc
[1], &pwd
->run_table
[1], &pwd
->level_table
[1],
427 static void wma_lsp_to_curve_init(struct private_wmadec_data
*pwd
, int frame_len
)
432 wdel
= M_PI
/ frame_len
;
433 for (i
= 0; i
< frame_len
; i
++)
434 pwd
->lsp_cos_table
[i
] = 2.0f
* cos(wdel
* i
);
436 /* tables for x^-0.25 computation */
437 for (i
= 0; i
< 256; i
++) {
439 pwd
->lsp_pow_e_table
[i
] = pow(2.0, e
* -0.25);
442 /* These two tables are needed to avoid two operations in pow_m1_4. */
444 for (i
= (1 << LSP_POW_BITS
) - 1; i
>= 0; i
--) {
445 m
= (1 << LSP_POW_BITS
) + i
;
446 a
= (float) m
*(0.5 / (1 << LSP_POW_BITS
));
448 pwd
->lsp_pow_m_table1
[i
] = 2 * a
- b
;
449 pwd
->lsp_pow_m_table2
[i
] = b
- a
;
454 static int wma_decode_init(char *initial_buf
, int len
, struct private_wmadec_data
**result
)
456 struct private_wmadec_data
*pwd
;
459 PARA_NOTICE_LOG("initial buf: %d bytes\n", len
);
460 pwd
= para_calloc(sizeof(*pwd
));
461 ret
= read_asf_header(initial_buf
, len
, &pwd
->ahi
);
467 pwd
->use_exp_vlc
= pwd
->ahi
.flags2
& 0x0001;
468 pwd
->use_bit_reservoir
= pwd
->ahi
.flags2
& 0x0002;
469 pwd
->use_variable_block_len
= pwd
->ahi
.flags2
& 0x0004;
475 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++) {
476 ret
= imdct_init(pwd
->frame_len_bits
- i
+ 1, &pwd
->mdct_ctx
[i
]);
480 if (pwd
->use_noise_coding
) {
481 PARA_INFO_LOG("using noise coding\n");
482 init_vlc(&pwd
->hgain_vlc
, HGAINVLCBITS
,
483 sizeof(ff_wma_hgain_huffbits
), ff_wma_hgain_huffbits
,
484 ff_wma_hgain_huffcodes
, 2);
487 if (pwd
->use_exp_vlc
) {
488 PARA_INFO_LOG("using exp_vlc\n");
489 init_vlc(&pwd
->exp_vlc
, EXPVLCBITS
,
490 sizeof(ff_wma_scale_huffbits
), ff_wma_scale_huffbits
,
491 ff_wma_scale_huffcodes
, 4);
493 PARA_INFO_LOG("using curve\n");
494 wma_lsp_to_curve_init(pwd
, pwd
->frame_len
);
497 return pwd
->ahi
.header_len
;
501 * compute x^-0.25 with an exponent and mantissa table. We use linear
502 * interpolation to reduce the mantissa table size at a small speed
503 * expense (linear interpolation approximately doubles the number of
504 * bits of precision).
506 static inline float pow_m1_4(struct private_wmadec_data
*pwd
, float x
)
517 m
= (u
.v
>> (23 - LSP_POW_BITS
)) & ((1 << LSP_POW_BITS
) - 1);
518 /* build interpolation scale: 1 <= t < 2. */
519 t
.v
= ((u
.v
<< LSP_POW_BITS
) & ((1 << 23) - 1)) | (127 << 23);
520 a
= pwd
->lsp_pow_m_table1
[m
];
521 b
= pwd
->lsp_pow_m_table2
[m
];
522 return pwd
->lsp_pow_e_table
[e
] * (a
+ b
* t
.f
);
525 static void wma_lsp_to_curve(struct private_wmadec_data
*pwd
,
526 float *out
, float *val_max_ptr
, int n
, float *lsp
)
529 float p
, q
, w
, v
, val_max
;
532 for (i
= 0; i
< n
; i
++) {
535 w
= pwd
->lsp_cos_table
[i
];
536 for (j
= 1; j
< NB_LSP_COEFS
; j
+= 2) {
543 v
= pow_m1_4(pwd
, v
);
548 *val_max_ptr
= val_max
;
551 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
552 static void decode_exp_lsp(struct private_wmadec_data
*pwd
, int ch
)
554 float lsp_coefs
[NB_LSP_COEFS
];
557 for (i
= 0; i
< NB_LSP_COEFS
; i
++) {
558 if (i
== 0 || i
>= 8)
559 val
= get_bits(&pwd
->gb
, 3);
561 val
= get_bits(&pwd
->gb
, 4);
562 lsp_coefs
[i
] = ff_wma_lsp_codebook
[i
][val
];
565 wma_lsp_to_curve(pwd
, pwd
->exponents
[ch
], &pwd
->max_exponent
[ch
],
566 pwd
->block_len
, lsp_coefs
);
569 /* Decode exponents coded with VLC codes. */
570 static int decode_exp_vlc(struct private_wmadec_data
*pwd
, int ch
)
572 int last_exp
, n
, code
;
573 const uint16_t *ptr
, *band_ptr
;
574 float v
, *q
, max_scale
, *q_end
;
576 band_ptr
= pwd
->exponent_bands
[pwd
->frame_len_bits
- pwd
->block_len_bits
];
578 q
= pwd
->exponents
[ch
];
579 q_end
= q
+ pwd
->block_len
;
584 code
= get_vlc(&pwd
->gb
, pwd
->exp_vlc
.table
, EXPVLCBITS
, EXPMAX
);
587 /* NOTE: this offset is the same as MPEG4 AAC ! */
588 last_exp
+= code
- 60;
589 /* XXX: use a table */
590 v
= pow(10, last_exp
* (1.0 / 16.0));
598 pwd
->max_exponent
[ch
] = max_scale
;
602 /* compute src0 * src1 + src2 */
603 static inline void vector_mult_add(float *dst
, const float *src0
, const float *src1
,
604 const float *src2
, int len
)
608 for (i
= 0; i
< len
; i
++)
609 dst
[i
] = src0
[i
] * src1
[i
] + src2
[i
];
612 static inline void vector_mult_reverse(float *dst
, const float *src0
,
613 const float *src1
, int len
)
618 for (i
= 0; i
< len
; i
++)
619 dst
[i
] = src0
[i
] * src1
[-i
];
623 * Apply MDCT window and add into output.
625 * We ensure that when the windows overlap their squared sum
626 * is always 1 (MDCT reconstruction rule).
628 static void wma_window(struct private_wmadec_data
*pwd
, float *out
)
630 float *in
= pwd
->output
;
631 int block_len
, bsize
, n
;
634 if (pwd
->block_len_bits
<= pwd
->prev_block_len_bits
) {
635 block_len
= pwd
->block_len
;
636 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
637 vector_mult_add(out
, in
, pwd
->windows
[bsize
], out
, block_len
);
639 block_len
= 1 << pwd
->prev_block_len_bits
;
640 n
= (pwd
->block_len
- block_len
) / 2;
641 bsize
= pwd
->frame_len_bits
- pwd
->prev_block_len_bits
;
642 vector_mult_add(out
+ n
, in
+ n
, pwd
->windows
[bsize
], out
+ n
,
644 memcpy(out
+ n
+ block_len
, in
+ n
+ block_len
,
647 out
+= pwd
->block_len
;
648 in
+= pwd
->block_len
;
650 if (pwd
->block_len_bits
<= pwd
->next_block_len_bits
) {
651 block_len
= pwd
->block_len
;
652 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
653 vector_mult_reverse(out
, in
, pwd
->windows
[bsize
], block_len
);
655 block_len
= 1 << pwd
->next_block_len_bits
;
656 n
= (pwd
->block_len
- block_len
) / 2;
657 bsize
= pwd
->frame_len_bits
- pwd
->next_block_len_bits
;
658 memcpy(out
, in
, n
* sizeof(float));
659 vector_mult_reverse(out
+ n
, in
+ n
, pwd
->windows
[bsize
],
661 memset(out
+ n
+ block_len
, 0, n
* sizeof(float));
665 static int wma_total_gain_to_bits(int total_gain
)
669 else if (total_gain
< 32)
671 else if (total_gain
< 40)
673 else if (total_gain
< 45)
680 * @return 0 if OK. 1 if last block of frame. return -1 if
681 * unrecorrable error.
683 static int wma_decode_block(struct private_wmadec_data
*pwd
)
685 int n
, v
, ch
, code
, bsize
;
686 int coef_nb_bits
, total_gain
;
687 int nb_coefs
[MAX_CHANNELS
];
690 /* compute current block length */
691 if (pwd
->use_variable_block_len
) {
692 n
= wma_log2(pwd
->nb_block_sizes
- 1) + 1;
694 if (pwd
->reset_block_lengths
) {
695 pwd
->reset_block_lengths
= 0;
696 v
= get_bits(&pwd
->gb
, n
);
697 if (v
>= pwd
->nb_block_sizes
)
699 pwd
->prev_block_len_bits
= pwd
->frame_len_bits
- v
;
700 v
= get_bits(&pwd
->gb
, n
);
701 if (v
>= pwd
->nb_block_sizes
)
703 pwd
->block_len_bits
= pwd
->frame_len_bits
- v
;
705 /* update block lengths */
706 pwd
->prev_block_len_bits
= pwd
->block_len_bits
;
707 pwd
->block_len_bits
= pwd
->next_block_len_bits
;
709 v
= get_bits(&pwd
->gb
, n
);
710 if (v
>= pwd
->nb_block_sizes
)
712 pwd
->next_block_len_bits
= pwd
->frame_len_bits
- v
;
714 /* fixed block len */
715 pwd
->next_block_len_bits
= pwd
->frame_len_bits
;
716 pwd
->prev_block_len_bits
= pwd
->frame_len_bits
;
717 pwd
->block_len_bits
= pwd
->frame_len_bits
;
720 /* now check if the block length is coherent with the frame length */
721 pwd
->block_len
= 1 << pwd
->block_len_bits
;
722 if ((pwd
->block_pos
+ pwd
->block_len
) > pwd
->frame_len
)
723 return -E_INCOHERENT_BLOCK_LEN
;
725 if (pwd
->ahi
.channels
== 2)
726 pwd
->ms_stereo
= get_bit(&pwd
->gb
);
728 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
729 int a
= get_bit(&pwd
->gb
);
730 pwd
->channel_coded
[ch
] = a
;
734 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
736 /* if no channel coded, no need to go further */
737 /* XXX: fix potential framing problems */
741 /* read total gain and extract corresponding number of bits for
742 coef escape coding */
745 int a
= get_bits(&pwd
->gb
, 7);
751 coef_nb_bits
= wma_total_gain_to_bits(total_gain
);
753 /* compute number of coefficients */
754 n
= pwd
->coefs_end
[bsize
] - pwd
->coefs_start
;
755 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++)
759 if (pwd
->use_noise_coding
) {
760 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
761 if (pwd
->channel_coded
[ch
]) {
763 m
= pwd
->exponent_high_sizes
[bsize
];
764 for (i
= 0; i
< m
; i
++) {
765 a
= get_bit(&pwd
->gb
);
766 pwd
->high_band_coded
[ch
][i
] = a
;
767 /* if noise coding, the coefficients are not transmitted */
771 exponent_high_bands
[bsize
]
776 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
777 if (pwd
->channel_coded
[ch
]) {
780 n
= pwd
->exponent_high_sizes
[bsize
];
781 val
= (int) 0x80000000;
782 for (i
= 0; i
< n
; i
++) {
783 if (pwd
->high_band_coded
[ch
][i
]) {
784 if (val
== (int) 0x80000000) {
800 pwd
->high_band_values
[ch
][i
] =
808 /* exponents can be reused in short blocks. */
809 if ((pwd
->block_len_bits
== pwd
->frame_len_bits
) || get_bit(&pwd
->gb
)) {
810 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
811 if (pwd
->channel_coded
[ch
]) {
812 if (pwd
->use_exp_vlc
) {
813 if (decode_exp_vlc(pwd
, ch
) < 0)
816 decode_exp_lsp(pwd
, ch
);
818 pwd
->exponents_bsize
[ch
] = bsize
;
823 /* parse spectral coefficients : just RLE encoding */
824 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
825 struct vlc
*coef_vlc
;
826 int level
, run
, sign
, tindex
;
828 const uint16_t *level_table
, *run_table
;
830 if (!pwd
->channel_coded
[ch
])
833 * special VLC tables are used for ms stereo because there is
834 * potentially less energy there
836 tindex
= (ch
== 1 && pwd
->ms_stereo
);
837 coef_vlc
= &pwd
->coef_vlc
[tindex
];
838 run_table
= pwd
->run_table
[tindex
];
839 level_table
= pwd
->level_table
[tindex
];
841 ptr
= &pwd
->coefs1
[ch
][0];
842 eptr
= ptr
+ nb_coefs
[ch
];
843 memset(ptr
, 0, pwd
->block_len
* sizeof(int16_t));
845 code
= get_vlc(&pwd
->gb
, coef_vlc
->table
,
849 if (code
== 1) /* EOB */
851 if (code
== 0) { /* escape */
852 level
= get_bits(&pwd
->gb
, coef_nb_bits
);
853 /* reading block_len_bits would be better */
854 run
= get_bits(&pwd
->gb
, pwd
->frame_len_bits
);
855 } else { /* normal code */
856 run
= run_table
[code
];
857 level
= level_table
[code
];
859 sign
= get_bit(&pwd
->gb
);
864 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
868 if (ptr
>= eptr
) /* EOB can be omitted */
875 int n4
= pwd
->block_len
/ 2;
876 mdct_norm
= 1.0 / (float) n4
;
879 /* finally compute the MDCT coefficients */
880 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
881 if (pwd
->channel_coded
[ch
]) {
883 float *coefs
, *exponents
, mult
, mult1
, noise
;
884 int i
, j
, n1
, last_high_band
, esize
;
885 float exp_power
[HIGH_BAND_MAX_SIZE
];
887 coefs1
= pwd
->coefs1
[ch
];
888 exponents
= pwd
->exponents
[ch
];
889 esize
= pwd
->exponents_bsize
[ch
];
890 mult
= pow(10, total_gain
* 0.05) / pwd
->max_exponent
[ch
];
892 coefs
= pwd
->coefs
[ch
];
893 if (pwd
->use_noise_coding
) {
895 /* very low freqs : noise */
896 for (i
= 0; i
< pwd
->coefs_start
; i
++) {
898 pwd
->noise_table
[pwd
->noise_index
] *
899 exponents
[i
<< bsize
>> esize
] *
903 1) & (NOISE_TAB_SIZE
- 1);
906 n1
= pwd
->exponent_high_sizes
[bsize
];
908 /* compute power of high bands */
909 exponents
= pwd
->exponents
[ch
] +
910 (pwd
->high_band_start
[bsize
] << bsize
);
911 last_high_band
= 0; /* avoid warning */
912 for (j
= 0; j
< n1
; j
++) {
913 n
= pwd
->exponent_high_bands
[pwd
->
919 if (pwd
->high_band_coded
[ch
][j
]) {
922 for (i
= 0; i
< n
; i
++) {
923 val
= exponents
[i
<< bsize
927 exp_power
[j
] = e2
/ n
;
930 exponents
+= n
<< bsize
;
933 /* main freqs and high freqs */
936 (pwd
->coefs_start
<< bsize
);
937 for (j
= -1; j
< n1
; j
++) {
939 n
= pwd
->high_band_start
[bsize
] -
942 n
= pwd
->exponent_high_bands
[pwd
->
949 if (j
>= 0 && pwd
->high_band_coded
[ch
][j
]) {
950 /* use noise with specified power */
955 /* XXX: use a table */
963 (pwd
->max_exponent
[ch
] *
966 for (i
= 0; i
< n
; i
++) {
968 pwd
->noise_table
[pwd
->
981 exponents
+= n
<< bsize
;
983 /* coded values + small noise */
984 for (i
= 0; i
< n
; i
++) {
986 pwd
->noise_table
[pwd
->
1000 exponents
+= n
<< bsize
;
1004 /* very high freqs : noise */
1005 n
= pwd
->block_len
- pwd
->coefs_end
[bsize
];
1007 mult
* exponents
[((-1 << bsize
)) >> esize
];
1008 for (i
= 0; i
< n
; i
++) {
1010 pwd
->noise_table
[pwd
->noise_index
] *
1014 1) & (NOISE_TAB_SIZE
- 1);
1017 /* XXX: optimize more */
1018 for (i
= 0; i
< pwd
->coefs_start
; i
++)
1021 for (i
= 0; i
< n
; i
++) {
1024 exponents
[i
<< bsize
>> esize
] *
1027 n
= pwd
->block_len
- pwd
->coefs_end
[bsize
];
1028 for (i
= 0; i
< n
; i
++)
1034 if (pwd
->ms_stereo
&& pwd
->channel_coded
[1]) {
1039 * Nominal case for ms stereo: we do it before mdct.
1041 * No need to optimize this case because it should almost never
1044 if (!pwd
->channel_coded
[0]) {
1045 PARA_NOTICE_LOG("rare ms-stereo\n");
1046 memset(pwd
->coefs
[0], 0, sizeof(float) * pwd
->block_len
);
1047 pwd
->channel_coded
[0] = 1;
1049 for (i
= 0; i
< pwd
->block_len
; i
++) {
1050 a
= pwd
->coefs
[0][i
];
1051 b
= pwd
->coefs
[1][i
];
1052 pwd
->coefs
[0][i
] = a
+ b
;
1053 pwd
->coefs
[1][i
] = a
- b
;
1058 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
1062 n4
= pwd
->block_len
/ 2;
1063 if (pwd
->channel_coded
[ch
])
1064 imdct(pwd
->mdct_ctx
[bsize
], pwd
->output
, pwd
->coefs
[ch
]);
1065 else if (!(pwd
->ms_stereo
&& ch
== 1))
1066 memset(pwd
->output
, 0, sizeof(pwd
->output
));
1068 /* multiply by the window and add in the frame */
1069 index
= (pwd
->frame_len
/ 2) + pwd
->block_pos
- n4
;
1070 wma_window(pwd
, &pwd
->frame_out
[ch
][index
]);
1073 /* update block number */
1074 pwd
->block_pos
+= pwd
->block_len
;
1075 if (pwd
->block_pos
>= pwd
->frame_len
)
1082 * Clip a signed integer value into the -32768,32767 range.
1084 * \param a The value to clip.
1086 * \return The clipped value.
1088 static inline int16_t av_clip_int16(int a
)
1090 if ((a
+ 32768) & ~65535)
1091 return (a
>> 31) ^ 32767;
1096 /* Decode a frame of frame_len samples. */
1097 static int wma_decode_frame(struct private_wmadec_data
*pwd
, int16_t *samples
)
1099 int ret
, i
, n
, ch
, incr
;
1103 /* read each block */
1106 ret
= wma_decode_block(pwd
);
1113 /* convert frame to integer */
1115 incr
= pwd
->ahi
.channels
;
1116 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
1118 iptr
= pwd
->frame_out
[ch
];
1120 for (i
= 0; i
< n
; i
++) {
1121 *ptr
= av_clip_int16(lrintf(*iptr
++));
1124 /* prepare for next block */
1125 memmove(&pwd
->frame_out
[ch
][0], &pwd
->frame_out
[ch
][pwd
->frame_len
],
1126 pwd
->frame_len
* sizeof(float));
1131 static int wma_decode_superframe(struct private_wmadec_data
*pwd
, void *data
,
1132 int *data_size
, const uint8_t *buf
, int buf_size
)
1136 static int frame_count
;
1138 if (buf_size
== 0) {
1139 pwd
->last_superframe_len
= 0;
1142 if (buf_size
< pwd
->ahi
.block_align
)
1144 buf_size
= pwd
->ahi
.block_align
;
1146 init_get_bits(&pwd
->gb
, buf
, buf_size
);
1147 if (pwd
->use_bit_reservoir
) {
1148 int i
, nb_frames
, bit_offset
, pos
, len
;
1151 /* read super frame header */
1152 skip_bits(&pwd
->gb
, 4); /* super frame index */
1153 nb_frames
= get_bits(&pwd
->gb
, 4) - 1;
1154 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1155 ret
= -E_WMA_OUTPUT_SPACE
;
1156 if ((nb_frames
+ 1) * pwd
->ahi
.channels
* pwd
->frame_len
1157 * sizeof(int16_t) > *data_size
)
1160 bit_offset
= get_bits(&pwd
->gb
, pwd
->byte_offset_bits
+ 3);
1162 if (pwd
->last_superframe_len
> 0) {
1163 /* add bit_offset bits to last frame */
1164 ret
= -E_WMA_BAD_SUPERFRAME
;
1165 if ((pwd
->last_superframe_len
+ ((bit_offset
+ 7) >> 3)) >
1166 MAX_CODED_SUPERFRAME_SIZE
)
1168 q
= pwd
->last_superframe
+ pwd
->last_superframe_len
;
1171 *q
++ = get_bits(&pwd
->gb
, 8);
1175 *q
++ = get_bits(&pwd
->gb
, len
) << (8 - len
);
1177 /* XXX: bit_offset bits into last frame */
1178 init_get_bits(&pwd
->gb
, pwd
->last_superframe
,
1179 MAX_CODED_SUPERFRAME_SIZE
);
1180 /* skip unused bits */
1181 if (pwd
->last_bitoffset
> 0)
1182 skip_bits(&pwd
->gb
, pwd
->last_bitoffset
);
1184 * This frame is stored in the last superframe and in
1187 ret
= -E_WMA_DECODE
;
1188 if (wma_decode_frame(pwd
, samples
) < 0)
1191 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1194 /* read each frame starting from bit_offset */
1195 pos
= bit_offset
+ 4 + 4 + pwd
->byte_offset_bits
+ 3;
1196 init_get_bits(&pwd
->gb
, buf
+ (pos
>> 3),
1197 (MAX_CODED_SUPERFRAME_SIZE
- (pos
>> 3)));
1200 skip_bits(&pwd
->gb
, len
);
1202 pwd
->reset_block_lengths
= 1;
1203 for (i
= 0; i
< nb_frames
; i
++) {
1204 ret
= -E_WMA_DECODE
;
1205 if (wma_decode_frame(pwd
, samples
) < 0)
1208 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1211 /* we copy the end of the frame in the last frame buffer */
1212 pos
= get_bits_count(&pwd
->gb
) +
1213 ((bit_offset
+ 4 + 4 + pwd
->byte_offset_bits
+ 3) & ~7);
1214 pwd
->last_bitoffset
= pos
& 7;
1216 len
= buf_size
- pos
;
1217 ret
= -E_WMA_BAD_SUPERFRAME
;
1218 if (len
> MAX_CODED_SUPERFRAME_SIZE
|| len
< 0)
1220 pwd
->last_superframe_len
= len
;
1221 memcpy(pwd
->last_superframe
, buf
+ pos
, len
);
1223 PARA_DEBUG_LOG("not using bit reservoir\n");
1224 ret
= -E_WMA_OUTPUT_SPACE
;
1225 if (pwd
->ahi
.channels
* pwd
->frame_len
* sizeof(int16_t) > *data_size
)
1227 /* single frame decode */
1228 ret
= -E_WMA_DECODE
;
1229 if (wma_decode_frame(pwd
, samples
) < 0)
1232 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1234 PARA_DEBUG_LOG("frame_count: %d frame_len: %d, block_len: %d, "
1235 "outbytes: %d, eaten: %d\n",
1236 frame_count
, pwd
->frame_len
, pwd
->block_len
,
1237 (int8_t *) samples
- (int8_t *) data
, pwd
->ahi
.block_align
);
1238 *data_size
= (int8_t *)samples
- (int8_t *)data
;
1239 return pwd
->ahi
.block_align
;
1241 /* reset the bit reservoir on errors */
1242 pwd
->last_superframe_len
= 0;
1246 static ssize_t
wmadec_convert(char *inbuffer
, size_t len
,
1247 struct filter_node
*fn
)
1249 int ret
, out_size
= fn
->bufsize
- fn
->loaded
;
1250 struct private_wmadec_data
*pwd
= fn
->private_data
;
1252 if (out_size
< 128 * 1024)
1255 ret
= wma_decode_init(inbuffer
, len
, &pwd
);
1258 fn
->private_data
= pwd
;
1259 fn
->fc
->channels
= pwd
->ahi
.channels
;
1260 fn
->fc
->samplerate
= pwd
->ahi
.sample_rate
;
1261 return pwd
->ahi
.header_len
;
1264 if (len
<= WMA_FRAME_SKIP
+ pwd
->ahi
.block_align
)
1266 ret
= wma_decode_superframe(pwd
, fn
->buf
+ fn
->loaded
,
1267 &out_size
, (uint8_t *)inbuffer
+ WMA_FRAME_SKIP
,
1268 len
- WMA_FRAME_SKIP
);
1271 fn
->loaded
+= out_size
;
1272 return ret
+ WMA_FRAME_SKIP
;
1275 static void wmadec_close(struct filter_node
*fn
)
1277 struct private_wmadec_data
*pwd
= fn
->private_data
;
1281 wmadec_cleanup(pwd
);
1284 free(fn
->private_data
);
1285 fn
->private_data
= NULL
;
1288 static void wmadec_open(struct filter_node
*fn
)
1290 fn
->bufsize
= 1024 * 1024;
1291 fn
->buf
= para_malloc(fn
->bufsize
);
1292 fn
->private_data
= NULL
;
1297 * The init function of the wma decoder.
1299 * \param f Its fields are filled in by the function.
1301 void wmadec_filter_init(struct filter
*f
)
1303 f
->open
= wmadec_open
;
1304 f
->close
= wmadec_close
;
1305 f
->convert
= wmadec_convert
;