2 * WMA compatible decoder
4 * Extracted 2009 from the mplayer source code 2009-02-10.
6 * Copyright (c) 2002 The FFmpeg Project
8 * Licensed under the GNU Lesser General Public License.
9 * For licencing details see COPYING.LIB.
12 /** \file wmadec_filter.c paraslash's WMA decoder. */
15 * This decoder handles Microsoft Windows Media Audio data version 2.
18 #define _XOPEN_SOURCE 600
27 #include <sys/select.h>
36 #include "bitstream.h"
43 #define BLOCK_MIN_BITS 7
44 #define BLOCK_MAX_BITS 11
45 #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
47 #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
49 /* XXX: find exact max size */
50 #define HIGH_BAND_MAX_SIZE 16
52 /* XXX: is it a suitable value ? */
53 #define MAX_CODED_SUPERFRAME_SIZE 16384
55 #define MAX_CHANNELS 2
57 #define NOISE_TAB_SIZE 8192
59 #define LSP_POW_BITS 7
61 struct private_wmadec_data
{
62 struct asf_header_info ahi
;
63 struct getbit_context gb
;
64 int use_bit_reservoir
;
65 int use_variable_block_len
;
66 int use_exp_vlc
; ///< exponent coding: 0 = lsp, 1 = vlc + delta
67 int use_noise_coding
; ///< true if perceptual noise is added
70 int exponent_sizes
[BLOCK_NB_SIZES
];
71 uint16_t exponent_bands
[BLOCK_NB_SIZES
][25];
72 int high_band_start
[BLOCK_NB_SIZES
]; ///< index of first coef in high band
73 int coefs_start
; ///< first coded coef
74 int coefs_end
[BLOCK_NB_SIZES
]; ///< max number of coded coefficients
75 int exponent_high_sizes
[BLOCK_NB_SIZES
];
76 int exponent_high_bands
[BLOCK_NB_SIZES
][HIGH_BAND_MAX_SIZE
];
79 /* coded values in high bands */
80 int high_band_coded
[MAX_CHANNELS
][HIGH_BAND_MAX_SIZE
];
81 int high_band_values
[MAX_CHANNELS
][HIGH_BAND_MAX_SIZE
];
83 /* there are two possible tables for spectral coefficients */
84 struct vlc coef_vlc
[2];
85 uint16_t *run_table
[2];
86 uint16_t *level_table
[2];
87 const struct coef_vlc_table
*coef_vlcs
[2];
89 int frame_len
; ///< frame length in samples
90 int frame_len_bits
; ///< frame_len = 1 << frame_len_bits
91 int nb_block_sizes
; ///< number of block sizes
93 int reset_block_lengths
;
94 int block_len_bits
; ///< log2 of current block length
95 int next_block_len_bits
; ///< log2 of next block length
96 int prev_block_len_bits
; ///< log2 of prev block length
97 int block_len
; ///< block length in samples
98 int block_pos
; ///< current position in frame
99 uint8_t ms_stereo
; ///< true if mid/side stereo mode
100 uint8_t channel_coded
[MAX_CHANNELS
]; ///< true if channel is coded
101 int exponents_bsize
[MAX_CHANNELS
]; ///< log2 ratio frame/exp. length
102 float exponents
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
103 float max_exponent
[MAX_CHANNELS
];
104 int16_t coefs1
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
105 float coefs
[MAX_CHANNELS
][BLOCK_MAX_SIZE
];
106 float output
[BLOCK_MAX_SIZE
* 2];
107 struct mdct_context
*mdct_ctx
[BLOCK_NB_SIZES
];
108 float *windows
[BLOCK_NB_SIZES
];
109 /* output buffer for one frame and the last for IMDCT windowing */
110 float frame_out
[MAX_CHANNELS
][BLOCK_MAX_SIZE
* 2];
111 /* last frame info */
112 uint8_t last_superframe
[MAX_CODED_SUPERFRAME_SIZE
+ 4]; /* padding added */
114 int last_superframe_len
;
115 float noise_table
[NOISE_TAB_SIZE
];
117 float noise_mult
; /* XXX: suppress that and integrate it in the noise array */
118 /* lsp_to_curve tables */
119 float lsp_cos_table
[BLOCK_MAX_SIZE
];
120 float lsp_pow_e_table
[256];
121 float lsp_pow_m_table1
[(1 << LSP_POW_BITS
)];
122 float lsp_pow_m_table2
[(1 << LSP_POW_BITS
)];
126 #define EXPMAX ((19 + EXPVLCBITS - 1) / EXPVLCBITS)
128 #define HGAINVLCBITS 9
129 #define HGAINMAX ((13 + HGAINVLCBITS - 1) / HGAINVLCBITS)
132 #define VLCMAX ((22 + VLCBITS - 1) / VLCBITS)
134 DECLARE_ALIGNED(16, float, ff_sine_128
[128]);
135 DECLARE_ALIGNED(16, float, ff_sine_256
[256]);
136 DECLARE_ALIGNED(16, float, ff_sine_512
[512]);
137 DECLARE_ALIGNED(16, float, ff_sine_1024
[1024]);
138 DECLARE_ALIGNED(16, float, ff_sine_2048
[2048]);
139 DECLARE_ALIGNED(16, float, ff_sine_4096
[4096]);
141 static float *ff_sine_windows
[6] = {
142 ff_sine_128
, ff_sine_256
, ff_sine_512
, ff_sine_1024
,
143 ff_sine_2048
, ff_sine_4096
146 /* Generate a sine window. */
147 static void sine_window_init(float *window
, int n
)
151 for (i
= 0; i
< n
; i
++)
152 window
[i
] = sinf((i
+ 0.5) * (M_PI
/ (2.0 * n
)));
155 static void wmadec_cleanup(struct private_wmadec_data
*pwd
)
159 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++)
160 imdct_end(pwd
->mdct_ctx
[i
]);
161 if (pwd
->use_exp_vlc
)
162 free_vlc(&pwd
->exp_vlc
);
163 if (pwd
->use_noise_coding
)
164 free_vlc(&pwd
->hgain_vlc
);
165 for (i
= 0; i
< 2; i
++) {
166 free_vlc(&pwd
->coef_vlc
[i
]);
167 free(pwd
->run_table
[i
]);
168 free(pwd
->level_table
[i
]);
172 static void init_coef_vlc(struct vlc
*vlc
, uint16_t **prun_table
,
173 uint16_t **plevel_table
, const struct coef_vlc_table
*vlc_table
)
175 int n
= vlc_table
->n
;
176 const uint8_t *table_bits
= vlc_table
->huffbits
;
177 const uint32_t *table_codes
= vlc_table
->huffcodes
;
178 const uint16_t *levels_table
= vlc_table
->levels
;
179 uint16_t *run_table
, *level_table
;
180 int i
, l
, j
, k
, level
;
182 init_vlc(vlc
, VLCBITS
, n
, table_bits
, table_codes
, 4);
184 run_table
= para_malloc(n
* sizeof(uint16_t));
185 level_table
= para_malloc(n
* sizeof(uint16_t));
190 l
= levels_table
[k
++];
191 for (j
= 0; j
< l
; j
++) {
193 level_table
[i
] = level
;
198 *prun_table
= run_table
;
199 *plevel_table
= level_table
;
202 /* compute the scale factor band sizes for each MDCT block size */
203 static void compute_scale_factor_band_sizes(struct private_wmadec_data
*pwd
,
206 struct asf_header_info
*ahi
= &pwd
->ahi
;
207 int a
, b
, pos
, lpos
, k
, block_len
, i
, j
, n
;
208 const uint8_t *table
;
210 pwd
->coefs_start
= 0;
211 for (k
= 0; k
< pwd
->nb_block_sizes
; k
++) {
212 block_len
= pwd
->frame_len
>> k
;
215 a
= pwd
->frame_len_bits
- BLOCK_MIN_BITS
- k
;
217 if (ahi
->sample_rate
>= 44100)
218 table
= exponent_band_44100
[a
];
219 else if (ahi
->sample_rate
>= 32000)
220 table
= exponent_band_32000
[a
];
221 else if (ahi
->sample_rate
>= 22050)
222 table
= exponent_band_22050
[a
];
226 for (i
= 0; i
< n
; i
++)
227 pwd
->exponent_bands
[k
][i
] = table
[i
];
228 pwd
->exponent_sizes
[k
] = n
;
232 for (i
= 0; i
< 25; i
++) {
233 a
= wma_critical_freqs
[i
];
234 b
= ahi
->sample_rate
;
235 pos
= ((block_len
* 2 * a
) + (b
<< 1)) / (4 * b
);
240 pwd
->exponent_bands
[k
][j
++] = pos
- lpos
;
241 if (pos
>= block_len
)
245 pwd
->exponent_sizes
[k
] = j
;
248 /* max number of coefs */
249 pwd
->coefs_end
[k
] = (pwd
->frame_len
- ((pwd
->frame_len
* 9) / 100)) >> k
;
250 /* high freq computation */
251 pwd
->high_band_start
[k
] = (int) ((block_len
* 2 * high_freq
)
252 / ahi
->sample_rate
+ 0.5);
253 n
= pwd
->exponent_sizes
[k
];
256 for (i
= 0; i
< n
; i
++) {
259 pos
+= pwd
->exponent_bands
[k
][i
];
261 if (start
< pwd
->high_band_start
[k
])
262 start
= pwd
->high_band_start
[k
];
263 if (end
> pwd
->coefs_end
[k
])
264 end
= pwd
->coefs_end
[k
];
266 pwd
->exponent_high_bands
[k
][j
++] = end
- start
;
268 pwd
->exponent_high_sizes
[k
] = j
;
272 static int wma_init(struct private_wmadec_data
*pwd
)
275 float bps1
, high_freq
;
279 struct asf_header_info
*ahi
= &pwd
->ahi
;
280 int flags2
= ahi
->flags2
;
282 if (ahi
->sample_rate
<= 0 || ahi
->sample_rate
> 50000
283 || ahi
->channels
<= 0 || ahi
->channels
> 8
284 || ahi
->bit_rate
<= 0)
285 return -E_WMA_BAD_PARAMS
;
287 /* compute MDCT block size */
288 if (ahi
->sample_rate
<= 16000) {
289 pwd
->frame_len_bits
= 9;
290 } else if (ahi
->sample_rate
<= 22050) {
291 pwd
->frame_len_bits
= 10;
293 pwd
->frame_len_bits
= 11;
295 pwd
->frame_len
= 1 << pwd
->frame_len_bits
;
296 if (pwd
->use_variable_block_len
) {
298 nb
= ((flags2
>> 3) & 3) + 1;
299 if ((ahi
->bit_rate
/ ahi
->channels
) >= 32000)
301 nb_max
= pwd
->frame_len_bits
- BLOCK_MIN_BITS
;
304 pwd
->nb_block_sizes
= nb
+ 1;
306 pwd
->nb_block_sizes
= 1;
308 /* init rate dependent parameters */
309 pwd
->use_noise_coding
= 1;
310 high_freq
= ahi
->sample_rate
* 0.5;
312 /* wma2 rates are normalized */
313 sample_rate1
= ahi
->sample_rate
;
314 if (sample_rate1
>= 44100)
315 sample_rate1
= 44100;
316 else if (sample_rate1
>= 22050)
317 sample_rate1
= 22050;
318 else if (sample_rate1
>= 16000)
319 sample_rate1
= 16000;
320 else if (sample_rate1
>= 11025)
321 sample_rate1
= 11025;
322 else if (sample_rate1
>= 8000)
325 bps
= (float) ahi
->bit_rate
/ (float) (ahi
->channels
* ahi
->sample_rate
);
326 pwd
->byte_offset_bits
= wma_log2((int) (bps
* pwd
->frame_len
/ 8.0 + 0.5)) + 2;
328 * Compute high frequency value and choose if noise coding should be
332 if (ahi
->channels
== 2)
334 if (sample_rate1
== 44100) {
336 pwd
->use_noise_coding
= 0;
338 high_freq
= high_freq
* 0.4;
339 } else if (sample_rate1
== 22050) {
341 pwd
->use_noise_coding
= 0;
342 else if (bps1
>= 0.72)
343 high_freq
= high_freq
* 0.7;
345 high_freq
= high_freq
* 0.6;
346 } else if (sample_rate1
== 16000) {
348 high_freq
= high_freq
* 0.5;
350 high_freq
= high_freq
* 0.3;
351 } else if (sample_rate1
== 11025) {
352 high_freq
= high_freq
* 0.7;
353 } else if (sample_rate1
== 8000) {
355 high_freq
= high_freq
* 0.5;
356 } else if (bps
> 0.75) {
357 pwd
->use_noise_coding
= 0;
359 high_freq
= high_freq
* 0.65;
363 high_freq
= high_freq
* 0.75;
364 } else if (bps
>= 0.6) {
365 high_freq
= high_freq
* 0.6;
367 high_freq
= high_freq
* 0.5;
370 PARA_INFO_LOG("channels=%d sample_rate=%d "
371 "bitrate=%d block_align=%d\n",
372 ahi
->channels
, ahi
->sample_rate
,
373 ahi
->bit_rate
, ahi
->block_align
);
374 PARA_INFO_LOG("frame_len=%d, bps=%f bps1=%f "
375 "high_freq=%f bitoffset=%d\n",
376 pwd
->frame_len
, bps
, bps1
,
377 high_freq
, pwd
->byte_offset_bits
);
378 PARA_INFO_LOG("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
379 pwd
->use_noise_coding
, pwd
->use_exp_vlc
, pwd
->nb_block_sizes
);
381 compute_scale_factor_band_sizes(pwd
, high_freq
);
382 /* init MDCT windows : simple sinus window */
383 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++) {
385 n
= 1 << (pwd
->frame_len_bits
- i
);
386 sine_window_init(ff_sine_windows
[pwd
->frame_len_bits
- i
- 7], n
);
387 pwd
->windows
[i
] = ff_sine_windows
[pwd
->frame_len_bits
- i
- 7];
390 pwd
->reset_block_lengths
= 1;
392 if (pwd
->use_noise_coding
) {
393 /* init the noise generator */
394 if (pwd
->use_exp_vlc
)
395 pwd
->noise_mult
= 0.02;
397 pwd
->noise_mult
= 0.04;
403 norm
= (1.0 / (float) (1LL << 31)) * sqrt(3) * pwd
->noise_mult
;
404 for (i
= 0; i
< NOISE_TAB_SIZE
; i
++) {
405 seed
= seed
* 314159 + 1;
406 pwd
->noise_table
[i
] = (float) ((int) seed
) * norm
;
411 /* choose the VLC tables for the coefficients */
413 if (ahi
->sample_rate
>= 32000) {
416 else if (bps1
< 1.16)
419 pwd
->coef_vlcs
[0] = &coef_vlcs
[coef_vlc_table
* 2];
420 pwd
->coef_vlcs
[1] = &coef_vlcs
[coef_vlc_table
* 2 + 1];
421 init_coef_vlc(&pwd
->coef_vlc
[0], &pwd
->run_table
[0], &pwd
->level_table
[0],
423 init_coef_vlc(&pwd
->coef_vlc
[1], &pwd
->run_table
[1], &pwd
->level_table
[1],
428 static void wma_lsp_to_curve_init(struct private_wmadec_data
*pwd
, int frame_len
)
433 wdel
= M_PI
/ frame_len
;
434 for (i
= 0; i
< frame_len
; i
++)
435 pwd
->lsp_cos_table
[i
] = 2.0f
* cos(wdel
* i
);
437 /* tables for x^-0.25 computation */
438 for (i
= 0; i
< 256; i
++) {
440 pwd
->lsp_pow_e_table
[i
] = pow(2.0, e
* -0.25);
443 /* These two tables are needed to avoid two operations in pow_m1_4. */
445 for (i
= (1 << LSP_POW_BITS
) - 1; i
>= 0; i
--) {
446 m
= (1 << LSP_POW_BITS
) + i
;
447 a
= (float) m
*(0.5 / (1 << LSP_POW_BITS
));
449 pwd
->lsp_pow_m_table1
[i
] = 2 * a
- b
;
450 pwd
->lsp_pow_m_table2
[i
] = b
- a
;
455 static int wma_decode_init(char *initial_buf
, int len
, struct private_wmadec_data
**result
)
457 struct private_wmadec_data
*pwd
;
460 PARA_NOTICE_LOG("initial buf: %d bytes\n", len
);
461 pwd
= para_calloc(sizeof(*pwd
));
462 ret
= read_asf_header(initial_buf
, len
, &pwd
->ahi
);
468 pwd
->use_exp_vlc
= pwd
->ahi
.flags2
& 0x0001;
469 pwd
->use_bit_reservoir
= pwd
->ahi
.flags2
& 0x0002;
470 pwd
->use_variable_block_len
= pwd
->ahi
.flags2
& 0x0004;
476 for (i
= 0; i
< pwd
->nb_block_sizes
; i
++) {
477 ret
= imdct_init(pwd
->frame_len_bits
- i
+ 1, &pwd
->mdct_ctx
[i
]);
481 if (pwd
->use_noise_coding
) {
482 PARA_INFO_LOG("using noise coding\n");
483 init_vlc(&pwd
->hgain_vlc
, HGAINVLCBITS
,
484 sizeof(ff_wma_hgain_huffbits
), ff_wma_hgain_huffbits
,
485 ff_wma_hgain_huffcodes
, 2);
488 if (pwd
->use_exp_vlc
) {
489 PARA_INFO_LOG("using exp_vlc\n");
490 init_vlc(&pwd
->exp_vlc
, EXPVLCBITS
,
491 sizeof(ff_wma_scale_huffbits
), ff_wma_scale_huffbits
,
492 ff_wma_scale_huffcodes
, 4);
494 PARA_INFO_LOG("using curve\n");
495 wma_lsp_to_curve_init(pwd
, pwd
->frame_len
);
498 return pwd
->ahi
.header_len
;
502 * compute x^-0.25 with an exponent and mantissa table. We use linear
503 * interpolation to reduce the mantissa table size at a small speed
504 * expense (linear interpolation approximately doubles the number of
505 * bits of precision).
507 static inline float pow_m1_4(struct private_wmadec_data
*pwd
, float x
)
518 m
= (u
.v
>> (23 - LSP_POW_BITS
)) & ((1 << LSP_POW_BITS
) - 1);
519 /* build interpolation scale: 1 <= t < 2. */
520 t
.v
= ((u
.v
<< LSP_POW_BITS
) & ((1 << 23) - 1)) | (127 << 23);
521 a
= pwd
->lsp_pow_m_table1
[m
];
522 b
= pwd
->lsp_pow_m_table2
[m
];
523 return pwd
->lsp_pow_e_table
[e
] * (a
+ b
* t
.f
);
526 static void wma_lsp_to_curve(struct private_wmadec_data
*pwd
,
527 float *out
, float *val_max_ptr
, int n
, float *lsp
)
530 float p
, q
, w
, v
, val_max
;
533 for (i
= 0; i
< n
; i
++) {
536 w
= pwd
->lsp_cos_table
[i
];
537 for (j
= 1; j
< NB_LSP_COEFS
; j
+= 2) {
544 v
= pow_m1_4(pwd
, v
);
549 *val_max_ptr
= val_max
;
552 /* Decode exponents coded with LSP coefficients (same idea as Vorbis). */
553 static void decode_exp_lsp(struct private_wmadec_data
*pwd
, int ch
)
555 float lsp_coefs
[NB_LSP_COEFS
];
558 for (i
= 0; i
< NB_LSP_COEFS
; i
++) {
559 if (i
== 0 || i
>= 8)
560 val
= get_bits(&pwd
->gb
, 3);
562 val
= get_bits(&pwd
->gb
, 4);
563 lsp_coefs
[i
] = ff_wma_lsp_codebook
[i
][val
];
566 wma_lsp_to_curve(pwd
, pwd
->exponents
[ch
], &pwd
->max_exponent
[ch
],
567 pwd
->block_len
, lsp_coefs
);
570 /* Decode exponents coded with VLC codes. */
571 static int decode_exp_vlc(struct private_wmadec_data
*pwd
, int ch
)
573 int last_exp
, n
, code
;
574 const uint16_t *ptr
, *band_ptr
;
575 float v
, *q
, max_scale
, *q_end
;
577 band_ptr
= pwd
->exponent_bands
[pwd
->frame_len_bits
- pwd
->block_len_bits
];
579 q
= pwd
->exponents
[ch
];
580 q_end
= q
+ pwd
->block_len
;
585 code
= get_vlc(&pwd
->gb
, pwd
->exp_vlc
.table
, EXPVLCBITS
, EXPMAX
);
588 /* NOTE: this offset is the same as MPEG4 AAC ! */
589 last_exp
+= code
- 60;
590 /* XXX: use a table */
591 v
= pow(10, last_exp
* (1.0 / 16.0));
599 pwd
->max_exponent
[ch
] = max_scale
;
603 /* compute src0 * src1 + src2 */
604 static inline void vector_mult_add(float *dst
, const float *src0
, const float *src1
,
605 const float *src2
, int len
)
609 for (i
= 0; i
< len
; i
++)
610 dst
[i
] = src0
[i
] * src1
[i
] + src2
[i
];
613 static inline void vector_mult_reverse(float *dst
, const float *src0
,
614 const float *src1
, int len
)
619 for (i
= 0; i
< len
; i
++)
620 dst
[i
] = src0
[i
] * src1
[-i
];
624 * Apply MDCT window and add into output.
626 * We ensure that when the windows overlap their squared sum
627 * is always 1 (MDCT reconstruction rule).
629 static void wma_window(struct private_wmadec_data
*pwd
, float *out
)
631 float *in
= pwd
->output
;
632 int block_len
, bsize
, n
;
635 if (pwd
->block_len_bits
<= pwd
->prev_block_len_bits
) {
636 block_len
= pwd
->block_len
;
637 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
638 vector_mult_add(out
, in
, pwd
->windows
[bsize
], out
, block_len
);
640 block_len
= 1 << pwd
->prev_block_len_bits
;
641 n
= (pwd
->block_len
- block_len
) / 2;
642 bsize
= pwd
->frame_len_bits
- pwd
->prev_block_len_bits
;
643 vector_mult_add(out
+ n
, in
+ n
, pwd
->windows
[bsize
], out
+ n
,
645 memcpy(out
+ n
+ block_len
, in
+ n
+ block_len
,
648 out
+= pwd
->block_len
;
649 in
+= pwd
->block_len
;
651 if (pwd
->block_len_bits
<= pwd
->next_block_len_bits
) {
652 block_len
= pwd
->block_len
;
653 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
654 vector_mult_reverse(out
, in
, pwd
->windows
[bsize
], block_len
);
656 block_len
= 1 << pwd
->next_block_len_bits
;
657 n
= (pwd
->block_len
- block_len
) / 2;
658 bsize
= pwd
->frame_len_bits
- pwd
->next_block_len_bits
;
659 memcpy(out
, in
, n
* sizeof(float));
660 vector_mult_reverse(out
+ n
, in
+ n
, pwd
->windows
[bsize
],
662 memset(out
+ n
+ block_len
, 0, n
* sizeof(float));
666 static int wma_total_gain_to_bits(int total_gain
)
670 else if (total_gain
< 32)
672 else if (total_gain
< 40)
674 else if (total_gain
< 45)
681 * @return 0 if OK. 1 if last block of frame. return -1 if
682 * unrecorrable error.
684 static int wma_decode_block(struct private_wmadec_data
*pwd
)
686 int n
, v
, ch
, code
, bsize
;
687 int coef_nb_bits
, total_gain
;
688 int nb_coefs
[MAX_CHANNELS
];
691 /* compute current block length */
692 if (pwd
->use_variable_block_len
) {
693 n
= wma_log2(pwd
->nb_block_sizes
- 1) + 1;
695 if (pwd
->reset_block_lengths
) {
696 pwd
->reset_block_lengths
= 0;
697 v
= get_bits(&pwd
->gb
, n
);
698 if (v
>= pwd
->nb_block_sizes
)
700 pwd
->prev_block_len_bits
= pwd
->frame_len_bits
- v
;
701 v
= get_bits(&pwd
->gb
, n
);
702 if (v
>= pwd
->nb_block_sizes
)
704 pwd
->block_len_bits
= pwd
->frame_len_bits
- v
;
706 /* update block lengths */
707 pwd
->prev_block_len_bits
= pwd
->block_len_bits
;
708 pwd
->block_len_bits
= pwd
->next_block_len_bits
;
710 v
= get_bits(&pwd
->gb
, n
);
711 if (v
>= pwd
->nb_block_sizes
)
713 pwd
->next_block_len_bits
= pwd
->frame_len_bits
- v
;
715 /* fixed block len */
716 pwd
->next_block_len_bits
= pwd
->frame_len_bits
;
717 pwd
->prev_block_len_bits
= pwd
->frame_len_bits
;
718 pwd
->block_len_bits
= pwd
->frame_len_bits
;
721 /* now check if the block length is coherent with the frame length */
722 pwd
->block_len
= 1 << pwd
->block_len_bits
;
723 if ((pwd
->block_pos
+ pwd
->block_len
) > pwd
->frame_len
)
724 return -E_INCOHERENT_BLOCK_LEN
;
726 if (pwd
->ahi
.channels
== 2)
727 pwd
->ms_stereo
= get_bit(&pwd
->gb
);
729 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
730 int a
= get_bit(&pwd
->gb
);
731 pwd
->channel_coded
[ch
] = a
;
735 bsize
= pwd
->frame_len_bits
- pwd
->block_len_bits
;
737 /* if no channel coded, no need to go further */
738 /* XXX: fix potential framing problems */
742 /* read total gain and extract corresponding number of bits for
743 coef escape coding */
746 int a
= get_bits(&pwd
->gb
, 7);
752 coef_nb_bits
= wma_total_gain_to_bits(total_gain
);
754 /* compute number of coefficients */
755 n
= pwd
->coefs_end
[bsize
] - pwd
->coefs_start
;
756 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++)
760 if (pwd
->use_noise_coding
) {
761 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
762 if (pwd
->channel_coded
[ch
]) {
764 m
= pwd
->exponent_high_sizes
[bsize
];
765 for (i
= 0; i
< m
; i
++) {
766 a
= get_bit(&pwd
->gb
);
767 pwd
->high_band_coded
[ch
][i
] = a
;
768 /* if noise coding, the coefficients are not transmitted */
772 exponent_high_bands
[bsize
]
777 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
778 if (pwd
->channel_coded
[ch
]) {
781 n
= pwd
->exponent_high_sizes
[bsize
];
782 val
= (int) 0x80000000;
783 for (i
= 0; i
< n
; i
++) {
784 if (pwd
->high_band_coded
[ch
][i
]) {
785 if (val
== (int) 0x80000000) {
801 pwd
->high_band_values
[ch
][i
] =
809 /* exponents can be reused in short blocks. */
810 if ((pwd
->block_len_bits
== pwd
->frame_len_bits
) || get_bit(&pwd
->gb
)) {
811 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
812 if (pwd
->channel_coded
[ch
]) {
813 if (pwd
->use_exp_vlc
) {
814 if (decode_exp_vlc(pwd
, ch
) < 0)
817 decode_exp_lsp(pwd
, ch
);
819 pwd
->exponents_bsize
[ch
] = bsize
;
824 /* parse spectral coefficients : just RLE encoding */
825 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
826 struct vlc
*coef_vlc
;
827 int level
, run
, tindex
;
829 const uint16_t *level_table
, *run_table
;
831 if (!pwd
->channel_coded
[ch
])
834 * special VLC tables are used for ms stereo because there is
835 * potentially less energy there
837 tindex
= (ch
== 1 && pwd
->ms_stereo
);
838 coef_vlc
= &pwd
->coef_vlc
[tindex
];
839 run_table
= pwd
->run_table
[tindex
];
840 level_table
= pwd
->level_table
[tindex
];
842 ptr
= &pwd
->coefs1
[ch
][0];
843 eptr
= ptr
+ nb_coefs
[ch
];
844 memset(ptr
, 0, pwd
->block_len
* sizeof(int16_t));
846 code
= get_vlc(&pwd
->gb
, coef_vlc
->table
,
850 if (code
== 1) /* EOB */
852 if (code
== 0) { /* escape */
853 level
= get_bits(&pwd
->gb
, coef_nb_bits
);
854 /* reading block_len_bits would be better */
855 run
= get_bits(&pwd
->gb
, pwd
->frame_len_bits
);
856 } else { /* normal code */
857 run
= run_table
[code
];
858 level
= level_table
[code
];
860 if (!get_bit(&pwd
->gb
))
864 PARA_ERROR_LOG("overflow in spectral RLE, ignoring\n");
868 if (ptr
>= eptr
) /* EOB can be omitted */
875 int n4
= pwd
->block_len
/ 2;
876 mdct_norm
= 1.0 / (float) n4
;
879 /* finally compute the MDCT coefficients */
880 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
881 if (pwd
->channel_coded
[ch
]) {
883 float *coefs
, *exponents
, mult
, mult1
, noise
;
884 int i
, j
, n1
, last_high_band
, esize
;
885 float exp_power
[HIGH_BAND_MAX_SIZE
];
887 coefs1
= pwd
->coefs1
[ch
];
888 exponents
= pwd
->exponents
[ch
];
889 esize
= pwd
->exponents_bsize
[ch
];
890 mult
= pow(10, total_gain
* 0.05) / pwd
->max_exponent
[ch
];
892 coefs
= pwd
->coefs
[ch
];
893 if (pwd
->use_noise_coding
) {
895 /* very low freqs : noise */
896 for (i
= 0; i
< pwd
->coefs_start
; i
++) {
898 pwd
->noise_table
[pwd
->noise_index
] *
899 exponents
[i
<< bsize
>> esize
] *
903 1) & (NOISE_TAB_SIZE
- 1);
906 n1
= pwd
->exponent_high_sizes
[bsize
];
908 /* compute power of high bands */
909 exponents
= pwd
->exponents
[ch
] +
910 (pwd
->high_band_start
[bsize
] << bsize
);
911 last_high_band
= 0; /* avoid warning */
912 for (j
= 0; j
< n1
; j
++) {
913 n
= pwd
->exponent_high_bands
[pwd
->
919 if (pwd
->high_band_coded
[ch
][j
]) {
922 for (i
= 0; i
< n
; i
++) {
923 val
= exponents
[i
<< bsize
927 exp_power
[j
] = e2
/ n
;
930 exponents
+= n
<< bsize
;
933 /* main freqs and high freqs */
936 (pwd
->coefs_start
<< bsize
);
937 for (j
= -1; j
< n1
; j
++) {
939 n
= pwd
->high_band_start
[bsize
] -
942 n
= pwd
->exponent_high_bands
[pwd
->
949 if (j
>= 0 && pwd
->high_band_coded
[ch
][j
]) {
950 /* use noise with specified power */
955 /* XXX: use a table */
963 (pwd
->max_exponent
[ch
] *
966 for (i
= 0; i
< n
; i
++) {
968 pwd
->noise_table
[pwd
->
981 exponents
+= n
<< bsize
;
983 /* coded values + small noise */
984 for (i
= 0; i
< n
; i
++) {
986 pwd
->noise_table
[pwd
->
1000 exponents
+= n
<< bsize
;
1004 /* very high freqs : noise */
1005 n
= pwd
->block_len
- pwd
->coefs_end
[bsize
];
1007 mult
* exponents
[((-1 << bsize
)) >> esize
];
1008 for (i
= 0; i
< n
; i
++) {
1010 pwd
->noise_table
[pwd
->noise_index
] *
1014 1) & (NOISE_TAB_SIZE
- 1);
1017 /* XXX: optimize more */
1018 for (i
= 0; i
< pwd
->coefs_start
; i
++)
1021 for (i
= 0; i
< n
; i
++) {
1024 exponents
[i
<< bsize
>> esize
] *
1027 n
= pwd
->block_len
- pwd
->coefs_end
[bsize
];
1028 for (i
= 0; i
< n
; i
++)
1034 if (pwd
->ms_stereo
&& pwd
->channel_coded
[1]) {
1039 * Nominal case for ms stereo: we do it before mdct.
1041 * No need to optimize this case because it should almost never
1044 if (!pwd
->channel_coded
[0]) {
1045 PARA_NOTICE_LOG("rare ms-stereo\n");
1046 memset(pwd
->coefs
[0], 0, sizeof(float) * pwd
->block_len
);
1047 pwd
->channel_coded
[0] = 1;
1049 for (i
= 0; i
< pwd
->block_len
; i
++) {
1050 a
= pwd
->coefs
[0][i
];
1051 b
= pwd
->coefs
[1][i
];
1052 pwd
->coefs
[0][i
] = a
+ b
;
1053 pwd
->coefs
[1][i
] = a
- b
;
1058 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
1062 n4
= pwd
->block_len
/ 2;
1063 if (pwd
->channel_coded
[ch
])
1064 imdct(pwd
->mdct_ctx
[bsize
], pwd
->output
, pwd
->coefs
[ch
]);
1065 else if (!(pwd
->ms_stereo
&& ch
== 1))
1066 memset(pwd
->output
, 0, sizeof(pwd
->output
));
1068 /* multiply by the window and add in the frame */
1069 index
= (pwd
->frame_len
/ 2) + pwd
->block_pos
- n4
;
1070 wma_window(pwd
, &pwd
->frame_out
[ch
][index
]);
1073 /* update block number */
1074 pwd
->block_pos
+= pwd
->block_len
;
1075 if (pwd
->block_pos
>= pwd
->frame_len
)
1082 * Clip a signed integer value into the -32768,32767 range.
1084 * \param a The value to clip.
1086 * \return The clipped value.
1088 static inline int16_t av_clip_int16(int a
)
1090 if ((a
+ 32768) & ~65535)
1091 return (a
>> 31) ^ 32767;
1096 /* Decode a frame of frame_len samples. */
1097 static int wma_decode_frame(struct private_wmadec_data
*pwd
, int16_t *samples
)
1099 int ret
, i
, n
, ch
, incr
;
1103 /* read each block */
1106 ret
= wma_decode_block(pwd
);
1113 /* convert frame to integer */
1115 incr
= pwd
->ahi
.channels
;
1116 for (ch
= 0; ch
< pwd
->ahi
.channels
; ch
++) {
1118 iptr
= pwd
->frame_out
[ch
];
1120 for (i
= 0; i
< n
; i
++) {
1121 *ptr
= av_clip_int16(lrintf(*iptr
++));
1124 /* prepare for next block */
1125 memmove(&pwd
->frame_out
[ch
][0], &pwd
->frame_out
[ch
][pwd
->frame_len
],
1126 pwd
->frame_len
* sizeof(float));
1131 static int wma_decode_superframe(struct private_wmadec_data
*pwd
, void *data
,
1132 int *data_size
, const uint8_t *buf
, int buf_size
)
1136 static int frame_count
;
1138 if (buf_size
== 0) {
1139 pwd
->last_superframe_len
= 0;
1142 if (buf_size
< pwd
->ahi
.block_align
)
1144 buf_size
= pwd
->ahi
.block_align
;
1146 init_get_bits(&pwd
->gb
, buf
, buf_size
);
1147 if (pwd
->use_bit_reservoir
) {
1148 int i
, nb_frames
, bit_offset
, pos
, len
;
1151 /* read super frame header */
1152 skip_bits(&pwd
->gb
, 4); /* super frame index */
1153 nb_frames
= get_bits(&pwd
->gb
, 4) - 1;
1154 // PARA_DEBUG_LOG("have %d frames\n", nb_frames);
1155 ret
= -E_WMA_OUTPUT_SPACE
;
1156 if ((nb_frames
+ 1) * pwd
->ahi
.channels
* pwd
->frame_len
1157 * sizeof(int16_t) > *data_size
)
1160 bit_offset
= get_bits(&pwd
->gb
, pwd
->byte_offset_bits
+ 3);
1162 if (pwd
->last_superframe_len
> 0) {
1163 /* add bit_offset bits to last frame */
1164 ret
= -E_WMA_BAD_SUPERFRAME
;
1165 if ((pwd
->last_superframe_len
+ ((bit_offset
+ 7) >> 3)) >
1166 MAX_CODED_SUPERFRAME_SIZE
)
1168 q
= pwd
->last_superframe
+ pwd
->last_superframe_len
;
1171 *q
++ = get_bits(&pwd
->gb
, 8);
1175 *q
++ = get_bits(&pwd
->gb
, len
) << (8 - len
);
1177 /* XXX: bit_offset bits into last frame */
1178 init_get_bits(&pwd
->gb
, pwd
->last_superframe
,
1179 MAX_CODED_SUPERFRAME_SIZE
);
1180 /* skip unused bits */
1181 if (pwd
->last_bitoffset
> 0)
1182 skip_bits(&pwd
->gb
, pwd
->last_bitoffset
);
1184 * This frame is stored in the last superframe and in
1187 ret
= -E_WMA_DECODE
;
1188 if (wma_decode_frame(pwd
, samples
) < 0)
1191 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1194 /* read each frame starting from bit_offset */
1195 pos
= bit_offset
+ 4 + 4 + pwd
->byte_offset_bits
+ 3;
1196 init_get_bits(&pwd
->gb
, buf
+ (pos
>> 3),
1197 (MAX_CODED_SUPERFRAME_SIZE
- (pos
>> 3)));
1200 skip_bits(&pwd
->gb
, len
);
1202 pwd
->reset_block_lengths
= 1;
1203 for (i
= 0; i
< nb_frames
; i
++) {
1204 ret
= -E_WMA_DECODE
;
1205 if (wma_decode_frame(pwd
, samples
) < 0)
1208 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1211 /* we copy the end of the frame in the last frame buffer */
1212 pos
= get_bits_count(&pwd
->gb
) +
1213 ((bit_offset
+ 4 + 4 + pwd
->byte_offset_bits
+ 3) & ~7);
1214 pwd
->last_bitoffset
= pos
& 7;
1216 len
= buf_size
- pos
;
1217 ret
= -E_WMA_BAD_SUPERFRAME
;
1218 if (len
> MAX_CODED_SUPERFRAME_SIZE
|| len
< 0)
1220 pwd
->last_superframe_len
= len
;
1221 memcpy(pwd
->last_superframe
, buf
+ pos
, len
);
1223 PARA_DEBUG_LOG("not using bit reservoir\n");
1224 ret
= -E_WMA_OUTPUT_SPACE
;
1225 if (pwd
->ahi
.channels
* pwd
->frame_len
* sizeof(int16_t) > *data_size
)
1227 /* single frame decode */
1228 ret
= -E_WMA_DECODE
;
1229 if (wma_decode_frame(pwd
, samples
) < 0)
1232 samples
+= pwd
->ahi
.channels
* pwd
->frame_len
;
1234 PARA_DEBUG_LOG("frame_count: %d frame_len: %d, block_len: %d, "
1235 "outbytes: %zd, eaten: %d\n",
1236 frame_count
, pwd
->frame_len
, pwd
->block_len
,
1237 (int8_t *) samples
- (int8_t *) data
, pwd
->ahi
.block_align
);
1238 *data_size
= (int8_t *)samples
- (int8_t *)data
;
1239 return pwd
->ahi
.block_align
;
1241 /* reset the bit reservoir on errors */
1242 pwd
->last_superframe_len
= 0;
1246 static ssize_t
wmadec_convert(char *inbuffer
, size_t len
,
1247 struct filter_node
*fn
)
1249 int ret
, out_size
= fn
->bufsize
- fn
->loaded
;
1250 struct private_wmadec_data
*pwd
= fn
->private_data
;
1252 if (out_size
< 128 * 1024)
1254 if (len
<= WMA_FRAME_SKIP
)
1257 ret
= wma_decode_init(inbuffer
, len
, &pwd
);
1260 fn
->private_data
= pwd
;
1261 fn
->fc
->channels
= pwd
->ahi
.channels
;
1262 fn
->fc
->samplerate
= pwd
->ahi
.sample_rate
;
1263 return pwd
->ahi
.header_len
;
1266 if (len
<= WMA_FRAME_SKIP
+ pwd
->ahi
.block_align
)
1268 ret
= wma_decode_superframe(pwd
, fn
->buf
+ fn
->loaded
,
1269 &out_size
, (uint8_t *)inbuffer
+ WMA_FRAME_SKIP
,
1270 len
- WMA_FRAME_SKIP
);
1273 fn
->loaded
+= out_size
;
1274 return ret
+ WMA_FRAME_SKIP
;
1277 static void wmadec_close(struct filter_node
*fn
)
1279 struct private_wmadec_data
*pwd
= fn
->private_data
;
1283 wmadec_cleanup(pwd
);
1286 free(fn
->private_data
);
1287 fn
->private_data
= NULL
;
1290 static void wmadec_open(struct filter_node
*fn
)
1292 fn
->bufsize
= 1024 * 1024;
1293 fn
->buf
= para_malloc(fn
->bufsize
);
1294 fn
->private_data
= NULL
;
1299 * The init function of the wma decoder.
1301 * \param f Its fields are filled in by the function.
1303 void wmadec_filter_init(struct filter
*f
)
1305 f
->open
= wmadec_open
;
1306 f
->close
= wmadec_close
;
1307 f
->convert
= wmadec_convert
;